Project description:Human impacts on natural resources increasingly necessitate understanding of the demographic rates driving wildlife population trends. Breeding productivity in many avian species is the demographic parameter that primarily influences population fluctuations. Nest density is a vital component of breeding productivity despite the fact that it is most often inferred exclusively from nest success. Unfortunately, locating every nest in a given area to determine nest density is often not feasible and can be biased by measurement error. The availability of a nest to be detected and the probability it will be detected during nest searching are two prominent sources of measurement error. A time-to-event nest density estimator has been developed that, unlike standard distance sampling methods, accounts for availability and can use nest data from outside structured surveys routinely collected to assess nest success. Its application is currently limited to Anseriformes, so we evaluated the general applicability of the time-to-event estimator in the order Passeriformes. To do this, we compared estimates of nest detection rate and nest density from the time-to-event estimator to distance sampling methods for 42 Brewer's sparrow (Spizella breweri) nests monitored in 2015. The time-to-event estimator produced similar but more precise nest detection and density estimates than distance sampling methods.
Project description:Saccharomonospora azurea Runmao et al. 1987 is a member of the genus Saccharomonospora, which is in the family Pseudonocardiaceae and thus far poorly characterized genomically. Members of the genus Saccharomonospora are of interest because they originate from diverse habitats, such as leaf litter, manure, compost, the surface of peat, and moist and over-heated grain, and may play a role in the primary degradation of plant material by attacking hemicellulose. Next to S. viridis, S. azurea is only the second member in the genus Saccharomonospora for which a completely sequenced type strain genome will be published. Here we describe the features of this organism, together with the complete genome sequence with project status 'Improved high quality draft', and the annotation. The 4,763,832 bp long chromosome with its 4,472 protein-coding and 58 RNA genes was sequenced as part of the DOE funded Community Sequencing Program (CSP) 2010 at the Joint Genome Institute (JGI).