Project description:Siganus virgatus Valenciennes 1835 is an essential species for examining reef ecosystems; however, its mitochondrial genome has not been studied. In this research, the mitogenome of S. virgatus was sequenced and characterized. The results revealed a circular genome of 16,505 bp that was composed of A (28.1%), C (31.3%), G (14%), and T nucleotides (26.6%). The genome contained 13 protein-coding genes, 22 transfer RNA genes, and two ribosomal RNA genes. Most genes of the mitogenome were transcribed on the heavy strand (H-strand), whereas ND6 and eight tRNA genes (including tRNA-Ala, -Asn, -Cys, -Gln, -Glu, -Ser (1), -Pro, and -Tyr) were transcribed on the light strand (L-strand). Comparative analysis revealed a high degree of conservation of gene content and order among the Siganus mitogenomes. Phylogenetic analysis inferred from whole mitogenomes exhibited a close relationship between S. virgatus and S. guttatus. The newly completed mitogenome of S. virgatus provides essential genomic data for further studies on population genetics and the evolution of the Siganus genus and the Siganidae family.
Project description:Maternal transmission of microbes occurs across the animal kingdom and is vital for offspring development and long-term health. The mechanisms of this transfer are most well-studied in humans and other mammals but are less well-understood in egg-laying animals, especially those with no parental care. Here, we investigate the transfer of maternal microbes in the oviparous phrynosomatid lizard, Sceloporus virgatus. We compared the microbiota of three maternal tissues-oviduct, cloaca, and intestine-to three offspring sample types: egg contents and eggshells on the day of oviposition, and hatchling intestinal tissue on the day of hatching. We found that maternal identity is an important factor in hatchling microbiome composition, indicating that maternal transmission is occurring. The maternal cloacal and oviductal communities contribute to offspring microbiota in all three sample types, with minimal microbes sourced from maternal intestines. This indicates that the maternal reproductive microbiome is more important for microbial inheritance than the gut microbiome, and the tissue-level variation of the adult S. virgatus microbiota must develop as the hatchling matures. Despite differences between adult and hatchling communities, offspring microbiota were primarily members of the Enterobacteriaceae and Yersiniaceae families (Phylum Proteobacteria), consistent with this and past studies of adult S. virgatus microbiomes.
Project description:Saccharomonospora azurea Runmao et al. 1987 is a member of the genus Saccharomonospora, which is in the family Pseudonocardiaceae and thus far poorly characterized genomically. Members of the genus Saccharomonospora are of interest because they originate from diverse habitats, such as leaf litter, manure, compost, the surface of peat, and moist and over-heated grain, and may play a role in the primary degradation of plant material by attacking hemicellulose. Next to S. viridis, S. azurea is only the second member in the genus Saccharomonospora for which a completely sequenced type strain genome will be published. Here we describe the features of this organism, together with the complete genome sequence with project status 'Improved high quality draft', and the annotation. The 4,763,832 bp long chromosome with its 4,472 protein-coding and 58 RNA genes was sequenced as part of the DOE funded Community Sequencing Program (CSP) 2010 at the Joint Genome Institute (JGI).