Project description:Noninvasive sampling, for example, of droppings or feathers, is a promising approach for molecular genetic studies on endangered and elusive animal species. Yet, such specimens are known for containing only minute amounts of DNA, resulting in lower typing success rates relative to analyses on fresh tissues such as muscle or blood. Furthermore, artefactual signals as well as contamination are more likely to occur when DNA is limited. To increase the reliability of DNA typing from noninvasive samples, optimized DNA extraction and polymerase chain reaction protocols were developed, taking advantage of developments in the forensic field aiming at successful molecular genetic analysis of DNA templates being low in quality and quantity. In the framework of an extensive monitoring project on population dynamics of capercaillie and black grouse in the Tyrolean Alps, feces samples and molted feathers from both species were collected. On a subset comprising about 200 specimens of either species, eight polymorphic short tandem repeat (STR) markers were analyzed to test these improved protocols. Besides optimizing DNA yields, both lowered sample consumption and reduced hands-on time were achieved, and the rates of informative profiles amounted to 90.7% for capercaillie and 92.4% for black grouse. Similarly, high success rates had not been achieved in earlier studies and demonstrate the benefit of the improved methodology, which should be easily adaptable for use on animal species other than those studied here. The STR genotypes were not only powerful enough to discriminate among unrelated birds but also appeared fit for telling apart closely related animals, as indicated by Pi and Pisib values. The software package allelematch aided analysis of genotypes featuring possible dropout and drop-in effects. Finally, a comparison between molecular genetic and morphology-based species-of-origin determination revealed a high degree of concordance.
Project description:This paper is the first record describing the molecular analysis of Eimeria species occurring in capercaillie (Tetrao urogallus) and black grouse (Tetrao tetrix) which inhabit northern Eurasia and are species critically endangered of extinction. Actions undertaken to protect endangered species, such as breeding individuals in closed aviaries, could allow saving those birds, but they also pose risk of accidental healing of invasive diseases, like coccidiosis. Therefore, an investigation was conducted on fecal samples collected from the capercaillies and black grouse originating from the Kirov region (Russia) and breeding centers located in Poland. Results indicate that the average prevalence of Eimeria revealed 72% (average OPG = 3548) and 80% (average OPG = 5220) in capercaillies and black grouse respectively. Most of the Eimeria spp. oocysts were non-sporulated; however, two different morphological types were observed. The phylogenetic analysis of cox-1 and 18S rRNA genes revealed the analyzed Eimeria sequences to belong to two species. In addition, it showed some similarities between both analyzed genes. Most of the sequences obtained from both grouse species coccidia belonged to one species partially homologous to the Eimeria spp. isolated from ring-necked pheasant (approx. 94 and 96% for cox-1 and 18S rRNA genes, respectively). Two strains isolated from capercaillies imported from Russia were related to turkey coccidia: E. innocua and E. dispersa (97-99% homology) in the cox-1 gene analysis and only one of them was related to those Eimeria species in the 18S rRNA gene analysis (98-99% homology).
Project description:Saccharomonospora azurea Runmao et al. 1987 is a member of the genus Saccharomonospora, which is in the family Pseudonocardiaceae and thus far poorly characterized genomically. Members of the genus Saccharomonospora are of interest because they originate from diverse habitats, such as leaf litter, manure, compost, the surface of peat, and moist and over-heated grain, and may play a role in the primary degradation of plant material by attacking hemicellulose. Next to S. viridis, S. azurea is only the second member in the genus Saccharomonospora for which a completely sequenced type strain genome will be published. Here we describe the features of this organism, together with the complete genome sequence with project status 'Improved high quality draft', and the annotation. The 4,763,832 bp long chromosome with its 4,472 protein-coding and 58 RNA genes was sequenced as part of the DOE funded Community Sequencing Program (CSP) 2010 at the Joint Genome Institute (JGI).