Project description:AtGenExpress: A multinational coordinated effort to uncover the transcriptome of the multicellular model organism Arabidopsis thaliana; The activity of genes and their encoded products can be regulated in several ways, but transcription is the primary level, since all other modes of regulation (RNA splicing, RNA and protein stability, etc.) are dependent on a gene being transcribed in the first place. The importance of transcriptional regulation has been underscored by the recent flood of global expression analyses, which have confirmed that transcriptional co-regulation of genes that act together is the norm, not the exception. Moreover, many studies suggest that evolutionary change is driven in large part by modifications of transcriptional programs. An essential first step toward deciphering the transcriptional code is to determine the expression pattern of all genes. With this goal in mind, an international effort to develop a gene expression atlas of Arabidopsis has been underway since fall 2003. This project, dubbed AtGenExpress, is funded by the DFG, and will provide the Arabidopsis community with access to a large set of Affymetrix microarray data. As part of this collaboration, we have generated expression data from 80 biologicaly different samples in triplicate. Comparison of plant hormone related mutants; Experimenter name = Hideki Goda , Shigeo Yoshida , Yukihisa Shimada; Experimenter institute = AtGenExpress Experiment Overall Design: 8 samples were used in this experiment
Project description:Plants need to be able to respond to changes quickly due to the inability of a plant to change location. Hormones within the plant signal for these transcriptional changes that will affect the plant's ability to survive. Strigolactone is a plant hormone that was more recently discovered so has a less detailed understanding of what genes it regulates, compared to other plant hormones. First published in Brewer et al 2016, PNAS We used microarrays to determine transcriptional responses in strigolactone mutants and in wild-type plants with various physiological treatment which affect hormone levels over 24 hours.
Project description:Background: Polycyclic aromatic hydrocarbons (PAHs) are toxic, widely-distributed, environmentally persistent, and carcinogenic byproducts of carbon-based fuel combustion. Previously, plant studies have shown that PAHs induce oxidative stress, reduce growth, and cause leaf deformation as well as tissue necrosis. To understand the transcriptional changes that occur during these processes, we performed microarray experiments on Arabidopsis thaliana L. under phenanthrene treatment, and compared the results to published Arabidopsis microarray data representing a variety of stress and hormone treatments. In addition, to probe hormonal aspects of PAH stress, we assayed transgenic ethylene-inducible reporter plants as well as ethylene pathway mutants under phenanthrene treatment. Results: Microarray results revealed numerous perturbations in signaling and metabolic pathways that regulate reactive oxygen species (ROS) and responses related to pathogen defense. A number of glutathione S-transferases that may tag xenobiotics for transport to the vacuole were upregulated. Comparative microarray analyses indicated that the phenanthrene response was closely related to other ROS conditions, including pathogen defense conditions. The ethylene-inducible transgenic reporters were activated by phenanthrene. Mutant experiments showed that PAH inhibits growth through an ethylene-independent pathway, as PAH-treated ethylene-insensitive etr1-4 mutants exhibited a greater growth reduction than WT. Further, phenanthrene-treated, constitutive ethylene signaling mutants had longer roots than the untreated control plants, indicating that the PAH inhibits parts of the ethylene signaling pathway. Conclusions: This study identified major physiological systems that participate in the PAH-induced stress response in Arabidopsis. At the transcriptional level, the results identify specific gene targets that will be valuable in finding lead compounds and engineering increased tolerance. Collectively, the results open a number of new avenues for researching and improving plant resilience and PAH phytoremediation.