Project description:October 2013 surface seawater collected from Monterey Bay was incubated with 1 micromolar 13C labeled glucose, starch, acetate, lipids, protein, or amino acids for 12 hours. Community RNA was extracted and hybridized to a Roche Nimblegen microarray and analyzed by NanoSIMS to obtain isotope ratio data for all probe spots.
Project description:October 2013 surface seawater collected from Monterey Bay was incubated with 1 micromolar 13C labeled glucose, starch, acetate, lipids, protein, or amino acids for 12 hours. Community RNA was extracted and hybridized to a Roche Nimblegen microarray and analyzed by NanoSIMS to obtain isotope ratio data for all probe spots. Two Chips for fluorescence, and 15 Chips for different substrates from samples incubated for 12 or 36 hours.
Project description:High Arctic soils have low nutrient availability, low moisture content and very low temperatures and, as such, they pose a particular problem in terms of hydrocarbon bioremediation. An in-depth knowledge of the microbiology involved in this process is likely to be crucial to understand and optimize the factors most influencing bioremediation. Here, we compared two distinct large-scale field bioremediation experiments, located at Alert (ex situ approach) and Eureka (in situ approach), in the Canadian high Arctic. Bacterial community structure and function were assessed using microarrays targeting the 16S rRNA genes of bacteria found in cold environments and hydrocarbon degradation genes as well as reverse-transcriptase real-time PCR targeting key functional genes. Results indicated a large difference between sampling sites in terms of both soil microbiology and decontamination rates. A rapid reorganization of the bacterial community structure and functional potential as well as rapid increases in the expression of alkane monooxygenases and polyaromatic hydrocarbon ring-hydroxylating-dioxygenases were observed one month after the bioremediation treatment commenced in the Alert soils. In contrast, no clear changes in community structure were observed in Eureka soils, while key gene expression increased after a relatively long lag period (1 year). Such discrepancies are likely caused by differences in bioremediation treatments (i.e. ex situ vs. in situ), weathering of the hydrocarbons, indigenous microbial communities, and environmental factors such as soil humidity and temperature. In addition, this study demonstrates the value of molecular tools for the monitoring of polar bacteria and their associated functions during bioremediation. 38 soil samples from two high arctic locations that were contaminated-treated, contaminated or not contaminated followed for up to 4 years
Project description:High Arctic soils have low nutrient availability, low moisture content and very low temperatures and, as such, they pose a particular problem in terms of hydrocarbon bioremediation. An in-depth knowledge of the microbiology involved in this process is likely to be crucial to understand and optimize the factors most influencing bioremediation. Here, we compared two distinct large-scale field bioremediation experiments, located at Alert (ex situ approach) and Eureka (in situ approach), in the Canadian high Arctic. Bacterial community structure and function were assessed using microarrays targeting the 16S rRNA genes of bacteria found in cold environments and hydrocarbon degradation genes as well as reverse-transcriptase real-time PCR targeting key functional genes. Results indicated a large difference between sampling sites in terms of both soil microbiology and decontamination rates. A rapid reorganization of the bacterial community structure and functional potential as well as rapid increases in the expression of alkane monooxygenases and polyaromatic hydrocarbon ring-hydroxylating-dioxygenases were observed one month after the bioremediation treatment commenced in the Alert soils. In contrast, no clear changes in community structure were observed in Eureka soils, while key gene expression increased after a relatively long lag period (1 year). Such discrepancies are likely caused by differences in bioremediation treatments (i.e. ex situ vs. in situ), weathering of the hydrocarbons, indigenous microbial communities, and environmental factors such as soil humidity and temperature. In addition, this study demonstrates the value of molecular tools for the monitoring of polar bacteria and their associated functions during bioremediation. 38 soil samples from two high arctic locations that were contaminated-treated, contaminated or not contaminated followed for up to 4 years
Project description:Understanding the bacterial community structure, and their functional analysis for active bioremediation process is essential to design better and cost effective strategies. Microarray analysis enables us to simultaneously study the functional and phylogenetic markers of hundreds of microorganisms which are involved in active bioremediation process in an environment. We have previously described development of a hybrid 60-mer multibacterial microarray platform (BiodegPhyloChip) for profiling the bacterial communities and functional genes simultaneously in environments undergoing active bioremediation process (Pathak et al; Appl Microbiol Biotechnol,Vol. 90, 1739-1754). The present study involved profiling the status of bacterial communities and functional (biodegradation) genes using the developed 60-mer oligonucleotide microarray BiodegPhyloChip at five contaminated hotspots in the state of Gujarat, in western India. The expression pattern of functional genes (coding for key enzymes in active bioremediation process) at these sites was studied to understand the dynamics of biodegradation in the presence of diverse group of chemicals. The results indicated that the nature of pollutants and their abundance greatly influence the structure of bacterial communities and the extent of expression of genes involved in various biodegradation pathways. In addition, site specific factors also play a pivotal role to affect the microbial community structure as was evident from results of 16S rRNA gene profiling of the five contaminated sites, where the community structure varied from one site to another drastically.
Project description:Transcriptional analysis of the effects of natural environmental variation across the vertical distribution of Mytilus californianus within a single mussel bed Keywords: Environmental Response 30 Biological replicates from plots sampled at 3 different verticle tide heights above the MLLW at Strawberry Hill Oregon. 15 mussels were sampled after a mid-day emmersion event and 15 mussels were sampled after a 1 hour recovery at ambient seawater temperatures. 1 replicate per array, compared using a common reference sample. 50 Biological replicates for 5 plots sampled at 2 different verticle tide heights above the MLLW at Boiler Bay Oregon. 25 mussels were sampled after a mid-day emmersion event and 25 mussels were sampled after a 1 hour recovery at ambient seawater temperatures. Pooled RNA from 5 biological replicates from each plot per array, compared using a common reference sample.
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals. Microbial community structure was determined using PhyoChio (G3) Water and sediment samples were collected after a rain event from Sungei Ulu Pandan watershed of >25km2, which has two major land use types: Residential and industrial. Samples were analyzed for physicochemical variables and microbial community structure and composition. Microbial community structure was determined using PhyoChio (G3)
Project description:<p><b>Public health importance</b>: Babies born preterm, approximately 1 out of every 9 live births in the United States, have significant respiratory morbidity over the first two years of life, exacerbated by respiratory viral infections. Many (<50%) return to pediatricians, emergency rooms and pulmonologists with symptoms of respiratory dysfunction (SRD): intermittent or chronic wheezing, poor growth and an excess of upper and lower respiratory tract infections (LRTI). SRD correlate inversely with gestational age and weight at birth and is more common in those with chronic lung disease of prematurity, yet its incidence and severity varies widely among both the prematurely born and those born at term. There is evidence from clinical studies and animal models that risks of LRTI and recurrent wheezing is influenced by gut and respiratory flora and by T cell responses to infection. Information gained from this study will be used to identify characteristics, risk factors and potential mechanisms for early and persistent lung disease in children born at term and born preterm.</p> <p>This Clinical Research Study will investigate the relationships between sequential respiratory viral infections, patterns of intestinal and respiratory bacterial colonization, and adaptive cellular immune phenotypes which are associated with increased susceptibility to respiratory infections and long term respiratory morbidity in preterm and full term infants. We hypothesize that the timing and acquisition of specific viral infections and bacterial species are directly related to respiratory morbidity in the first year of life as defined by SRD and by measures of pulmonary function. We hypothesize that cellular and molecular immuno-maturity are altered due to factors presented by premature birth in such a way as to promote chronic inflammatory and cytotoxic damage to the lung, with subsequent enhanced, damaging responses to infectious agents and environmental irritants. Our preliminary studies demonstrate both feasibility and expertise in mutiparameter immunophenotyping of small volume peripheral blood samples obtained from premature infants including gene expression arrays of flow cytometry sorted cells. We will use new technologies for known viral identification, as well as high-throughput metagenome sequencing of RNA and DNA virus like particles (VLP) to be used for viral discovery in infant respiratory sample and use of high-throughput pyrosequencing (454T) of bacterial 16S rRNA to determine shifts in bacterial community structure, occurring in pre-term (PT) as compared to full term (FT) infants, over the first year of life. Finally, we present statistical approaches to stratify disease risk predictors using multivariate logistic regression modeling approaches. We propose to evaluate T cell phenotypic and functional profiles relative to viral and predominant bacterial exposures according to highly complementary, but independent, Specific Objectives.</p> <p><b>Objective 1</b>: To determine if viral respiratory infections and patterns of respiratory and gut bacterial community structure (microbiome) in prematurely born babies predict the rate and degree of immunologic maturation, and pulmonary dysfunction, measured from birth to 36 weeks corrected gestational age (CGA).</p> <p><b>Objective 2</b>: To determine the relationship between respiratory viral infections and disease severity up to one year CGA, and the lymphocyte (Lc) phenotypes documented at term gestation (birth for term infants and 36 wks/NICU discharge in preterm infants) and at one year CGA. Three secondary outcomes of this objective will be to a) relate the quantity, type and severity of viral infections with pulmonary function at one and three years of life, b) relate the viral community structure to severity of viral infections and c) to seek evidence of modulation of viral susceptibility by bacterial respiratory and gut community structure (microbiome). The relationship of colonization with known and non-identified bacterial species in both the respiratory tract and the gut will be evaluated. </p>