Project description:The study aimed to characterize plasmids mediating carbepenem resistance in Klebsiella pneumoniae in Pretoria, South Africa. We analysed 56 K. pneumoniae isolates collected from academic hospital around Pretoria. Based on phenotypic and molecular results of these isolates, 6 representative isolates were chosen for further analysis using long reads sequencing platform. We observed multidrug resistant phenotype in all these isolates, including resistance to aminoglycosides, tetracycline, phenicol, fosfomycin, floroquinolones, and beta-lactams antibiotics. The blaOXA-48/181 and blaNDM-1/7 were manily the plasmid-mediated carbapenemases responsible for carbapenem resistance in the K. pneumoniae isolates in these academic hospitals. These carbapenemase genes were mainly associated with plasmid replicon groups IncF, IncL/M, IncA/C, and IncX3. This study showed plasmid-mediated carbapenemase spread of blaOXA and blaNDM genes mediated by conjugative plasmids in Pretoria hospitals.
2019-10-17 | GSE138949 | GEO
Project description:Unraveling the Impact of Genome Assembly on Bacterial Typing: A One Health Perspective
Project description:Lower respiratory tract infections are among the top five leading causes of human death. Fighting these infections is therefore a world health priority. Searching for induced alterations in host gene expression shared by several relevant respiratory pathogens represent an alternative to identifying new targets for wide-range host-oriented therapeutics. With this aim, alveolar macrophages were independently infected with three unrelated bacterial (Streptococcus pneumoniae, Klebsiella pneumoniae and Staphylococcus aureus) and two dissimilar viral (respiratory syncytial virus and influenza A virus) respiratory pathogens which are nevertheless highly relevant for human health. Cells were also activated with bacterial lipopolysaccharide (LPS) as a prototypical pathogen-associated molecular pattern. Patterns of differentially expressed cellular genes shared by the indicated pathogens were searched by microarray analysis. Most of the commonly up-regulated genes were related to the innate immune response and/or apoptosis, with Toll-like, RIG-I-like and NOD-like receptors among the top ten signaling pathways with over-expressed genes. These results identify new potential broad-spectrum targets to fight the important human infections caused by the bacteria and viruses studied here.
Project description:Mycobacterium abscessus (Mab) causes serious infections that often require over 18 months of antibiotic combination therapy. With β lactam antibiotics being safe, double β-lactam and β-lactam/β-lactamase inhibitor combinations are of interest for improving treatment of Mab infections and minimizing toxicity. However, a mechanistic approach for building these combinations is lacking since little is known about which penicillin-binding protein (PBP) target receptors are inactivated by different β-lactams in Mab. This project aimed to identify PBPs in Mab and study the binding affinities of each of these PBPs with β-lactam antibiotics. These first PBP occupancy patterns in Mab provide a mechanistic foundation for selecting and optimizing safe and effective combination therapies with β-lactams.
2020-11-24 | PXD022644 | Pride
Project description:Rm1021 sensitivity to SDS and beta-lactams