Project description:Biotic and abiotic stresses limit agricultural yields, and plants are often simultaneously exposed to multiple stresses. Combinations of stresses such as heat and drought or cold and high light intensity, have profound effects on crop performance and yeilds To analyze such responses, we initially compared transcriptome changes in ten Arabidopsis thaliana ecotypes using cold, heat, high light, salt and flagellin treatments as single stress factors or their double combinations.
Project description:Biotic and abiotic stresses limit agricultural yields, and plants are often simultaneously exposed to multiple stresses. Combinations of stresses such as heat and drought or cold and high light intensity, have profound effects on crop performance and yeilds To analyze such responses, we initially compared transcriptome changes in ten Arabidopsis thaliana ecotypes using cold, heat, high light, salt and flagellin treatments as single stress factors or their double combinations. Arabidopsis thaliana plants of ecotypes (Col, Ler, C24, Cvi, Kas1, An1, Sha, Kyo2, Eri and Kond) were subjected to the following stress treatments: Salt, Cold, Heat, High Light (HL), Salt+Heat, Salt+HL, Cold+HL, Heat+HL, as well as FLG (Flagellin, flg22 peptide), Cold+FLG, Heat+FLG
Project description:Plant mitochondria signal to the nucleus leading to altered transcription of nuclear genes by a process called mitochondrial retrograde regulation (MRR). MRR is implicated in metabolic homeostasis and responses to stress conditions. Transcriptional consequences on nuclear gene expression of mitochondrial perturbations were examined by a microarray analyses. Expression of 606 genes was altered by monofluoroacetate (MFA) inhibition of the TCA cycle in leaves of soil grown Arabidopsis plants in the dark for 10 hours. Functional gene category (MapMan) and cluster analyses showed that genes with expression levels affected by perturbation from MFA inhibition were most similarly affected by biotic stresses such as pathogens, not oxidative stresses. Overall, the data provide further evidence for the presence of mtROS-independent MRR signaling, and support the proposed involvement of MRR and mitochondrial function in plant responses to biotic stress.
Project description:Considering global climate changes, incidences of combined drought and heat stress are likely to increase in the future and will considerably influence plant-pathogen interactions. Until now, little is known about plants exposed to simultaneously occurring abiotic and biotic stresses. To shed some light on molecular plant responses to multiple stress factors, a versatile multi-factorial test system, allowing simultaneous application of heat, drought and virus stress, was developed. Comparative analysis of single, double and triple stress responses by transcriptome and metabolome analysis revealed that gene expression under multi-factorial stress is not predictable from single stress treatments. Hierarchical cluster and principal component analysis identified heat as the major stress factor clearly separating heat-stressed from non-heat stressed plants. We identified 11 genes differentially regulated in all stress combinations as well as 23 genes specifically-regulated under triple stress. Furthermore, we showed that virus treated plants displayed enhanced expression of defense genes, which was abolished in plants additionally subjected to heat and drought stress. Triple stress also reduced expression of genes involved in the R-mediated disease response and increased the cytoplasmic protein response which was not seen under single stress conditions. These observations suggested that abiotic stress factors significantly altered TuMV-specific signaling networks which lead to a deactivation of defense responses and a higher susceptibility of plants. Collectively, our transcriptome and metabolome data provide a powerful resource to study plant responses during multi-factorial stress and allows identifying metabolic processes and functional networks involved in tripartite interactions of plants with their environment. Stress induced gene expression in Arabidopsis leaves was measured after exposure to single and combined abiotic and biotic stress. Plants were grown on soil for 21 days till virus infection. Eight days later controlled drought stress was applied. At the end of the treatments heat was applied for three days. Four biological replicates have been hybridized for each treatment. Furthermore, Arabidopsis plants were exposed to a single severe heat stress (37°C day/33°C night) to mimic the severity of the triple stress experiment.
Project description:Plant mitochondria signal to the nucleus leading to altered transcription of nuclear genes by a process called mitochondrial retrograde regulation (MRR). MRR is implicated in metabolic homeostasis and responses to stress conditions. Transcriptional consequences on nuclear gene expression of mitochondrial perturbations were examined by a microarray analyses. Expression of 1316 was altered by antimycin A (AA) inhibition of the cytochrome respiratory pathway in leaves of soil grown Arabidopsis plants in the dark for 6 hours. Functional gene category (MapMan) and cluster analyses showed that genes with expression levels affected by perturbation from AA or MFA inhibition were most similarly affected by biotic stresses such as pathogens, not oxidative stresses. Overall, the data provide further evidence for the presence of mtROS-independent MRR signaling, and support the proposed involvement of MRR and mitochondrial function in plant responses to biotic stress.
Project description:Considering global climate changes, incidences of combined drought and heat stress are likely to increase in the future and will considerably influence plant-pathogen interactions. Until now, little is known about plants exposed to simultaneously occurring abiotic and biotic stresses. To shed some light on molecular plant responses to multiple stress factors, a versatile multi-factorial test system, allowing simultaneous application of heat, drought and virus stress, was developed. Comparative analysis of single, double and triple stress responses by transcriptome and metabolome analysis revealed that gene expression under multi-factorial stress is not predictable from single stress treatments. Hierarchical cluster and principal component analysis identified heat as the major stress factor clearly separating heat-stressed from non-heat stressed plants. We identified 11 genes differentially regulated in all stress combinations as well as 23 genes specifically-regulated under triple stress. Furthermore, we showed that virus treated plants displayed enhanced expression of defense genes, which was abolished in plants additionally subjected to heat and drought stress. Triple stress also reduced expression of genes involved in the R-mediated disease response and increased the cytoplasmic protein response which was not seen under single stress conditions. These observations suggested that abiotic stress factors significantly altered TuMV-specific signaling networks which lead to a deactivation of defense responses and a higher susceptibility of plants. Collectively, our transcriptome and metabolome data provide a powerful resource to study plant responses during multi-factorial stress and allows identifying metabolic processes and functional networks involved in tripartite interactions of plants with their environment. Stress induced gene expression in Arabidopsis leaves was measured after exposure to single and combined abiotic and biotic stress. Plants were grown on soil for 21 days till virus infection. Eight days later controlled drought stress was applied. At the end of the treatments heat was applied for three days. In parallel, a homozougus T-DNA insertion line SALK_021115C (N672283), located in the Arabidopsis gene At5g45000 has been exposed to the same stress conditions. Four biological replicates have been hybridized for each treatment.
Project description:Considering global climate changes, incidences of combined drought and heat stress are likely to increase in the future and will considerably influence plant-pathogen interactions. Until now, little is known about plants exposed to simultaneously occurring abiotic and biotic stresses. To shed some light on molecular plant responses to multiple stress factors, a versatile multi-factorial test system, allowing simultaneous application of heat, drought and virus stress, was developed. Comparative analysis of single, double and triple stress responses by transcriptome and metabolome analysis revealed that gene expression under multi-factorial stress is not predictable from single stress treatments. Hierarchical cluster and principal component analysis identified heat as the major stress factor clearly separating heat-stressed from non-heat stressed plants. We identified 11 genes differentially regulated in all stress combinations as well as 23 genes specifically-regulated under triple stress. Furthermore, we showed that virus treated plants displayed enhanced expression of defense genes, which was abolished in plants additionally subjected to heat and drought stress. Triple stress also reduced expression of genes involved in the R-mediated disease response and increased the cytoplasmic protein response which was not seen under single stress conditions. These observations suggested that abiotic stress factors significantly altered TuMV-specific signaling networks which lead to a deactivation of defense responses and a higher susceptibility of plants. Collectively, our transcriptome and metabolome data provide a powerful resource to study plant responses during multi-factorial stress and allows identifying metabolic processes and functional networks involved in tripartite interactions of plants with their environment. Stress induced gene expression in Arabidopsis leaves was measured after exposure to single and combined abiotic and biotic stress. Plants were grown on soil for 21 days till virus infection. Eight days later controlled drought stress was applied. At the end of the treatments heat was applied for three days. Four biological replicates have been hybridized for each treatment.
Project description:Considering global climate changes, incidences of combined drought and heat stress are likely to increase in the future and will considerably influence plant-pathogen interactions. Until now, little is known about plants exposed to simultaneously occurring abiotic and biotic stresses. To shed some light on molecular plant responses to multiple stress factors, a versatile multi-factorial test system, allowing simultaneous application of heat, drought and virus stress, was developed. Comparative analysis of single, double and triple stress responses by transcriptome and metabolome analysis revealed that gene expression under multi-factorial stress is not predictable from single stress treatments. Hierarchical cluster and principal component analysis identified heat as the major stress factor clearly separating heat-stressed from non-heat stressed plants. We identified 11 genes differentially regulated in all stress combinations as well as 23 genes specifically-regulated under triple stress. Furthermore, we showed that virus treated plants displayed enhanced expression of defense genes, which was abolished in plants additionally subjected to heat and drought stress. Triple stress also reduced expression of genes involved in the R-mediated disease response and increased the cytoplasmic protein response which was not seen under single stress conditions. These observations suggested that abiotic stress factors significantly altered TuMV-specific signaling networks which lead to a deactivation of defense responses and a higher susceptibility of plants. Collectively, our transcriptome and metabolome data provide a powerful resource to study plant responses during multi-factorial stress and allows identifying metabolic processes and functional networks involved in tripartite interactions of plants with their environment.
Project description:Considering global climate changes, incidences of combined drought and heat stress are likely to increase in the future and will considerably influence plant-pathogen interactions. Until now, little is known about plants exposed to simultaneously occurring abiotic and biotic stresses. To shed some light on molecular plant responses to multiple stress factors, a versatile multi-factorial test system, allowing simultaneous application of heat, drought and virus stress, was developed. Comparative analysis of single, double and triple stress responses by transcriptome and metabolome analysis revealed that gene expression under multi-factorial stress is not predictable from single stress treatments. Hierarchical cluster and principal component analysis identified heat as the major stress factor clearly separating heat-stressed from non-heat stressed plants. We identified 11 genes differentially regulated in all stress combinations as well as 23 genes specifically-regulated under triple stress. Furthermore, we showed that virus treated plants displayed enhanced expression of defense genes, which was abolished in plants additionally subjected to heat and drought stress. Triple stress also reduced expression of genes involved in the R-mediated disease response and increased the cytoplasmic protein response which was not seen under single stress conditions. These observations suggested that abiotic stress factors significantly altered TuMV-specific signaling networks which lead to a deactivation of defense responses and a higher susceptibility of plants. Collectively, our transcriptome and metabolome data provide a powerful resource to study plant responses during multi-factorial stress and allows identifying metabolic processes and functional networks involved in tripartite interactions of plants with their environment.