Project description:Microbial Communities in the Middle and Lower Reaches of the Yangtze River
| PRJEB60356 | ENA
Project description:Genetic Variation of Schizothorax kozlovi Nikolsky in the Upper Reaches of the Chinese Yangtze River Based on Genotyping for Simplified Genome Sequencing
| PRJNA851891 | ENA
Project description:Genetic Variation of Schizothorax kozlovi Nikolsky in the Upper Reaches of the Chinese Yangtze River Based on Genotyping for Simplified Genome Sequencing
Project description:The copper redhorse (Moxostoma hubbsi) is an endangered fish endemic to Quebec, Canada that is only known to spawn in two locations within the Richelieu River, a waterway draining a significant area of agricultural land. Accordingly, concerns have been raised over the impacts that agricultural pesticide contamination of spawning grounds and nursery habitats within the Richelieu River may have on early life stage copper redhorse. We assessed the effects of contaminants on early life stages of copper redhorse and river redhorse (Moxostoma carinatum), a closely related fish that shares the copper redhorse’s habitat and spawning grounds but is distributed more widely and is not yet listed as endangered. Copper and river redhorse embryos (1000 each) were exposed to either Richelieu River water in an in-situ flow-through system or to laboratory water used as a control. We assessed embryos hatching time, incidence of deformities and survival in copper and river redhorses. We then performed RNA sequencing on copper redhorse larvae to better understand changes due to river water exposure. We identified 341 compounds in the river water that were absent from lab water. Pesticide concentrations in the river peaked following rainfall during the spawning season. Embryos exposed to river water hatched prematurely at 63.0 and 59.2 cumulative degree days (CDD) compared to 65.4 and 69.9 CDD in laboratory water for river and copper redhorse, respectively. Copper redhorse exposed to river water also had a significantly lower survival rate than laboratory water (73% vs. 93%). RNA sequencing of copper redhorse revealed 18 differentially expressed genes (DEGs) following river water exposure. Eight of the upregulated DEGs (cd44, il1b, lamb3, lamc2, tgm5, orm1, saa, acod1) are linked to immune function and injury response and 7 of the downregulated DEGs (cpa2, ctrb, cela2a, ctrl, cpa1, prss1, cel) are involved with digestion and nutrient absorption. This study provided valuable data on the effects of anthropogenic contaminants present in the Richelieu River and increased our knowledge on the individual and mixture effects they have on an endangered fish.
2022-06-01 | GSE185175 | GEO
Project description:Environmental DNA Data of Fish Species in the Upper Yangtze River - Chishui River, China
Project description:In this study we applied MASC-seq (massive and parallel microarray sequencing, https://doi.org/10.1038/ncomms13182), a scRNA-seq method that facilitates sequencing of thousands of cells in parallel, and that couples microscope images with the single cell transcriptome data. For this method, fixed cells are spread over a microarray with 100 μm-sized spots of DNA capture probes with spot-specific indices. The cells are first imaged using a scanning microscope and then permeabilized, releasing their RNA out of the cells and bind to the probes on the array. cDNA is synthesized, harvested and sequenced, and, using the spot-specific barcode-sequences, cDNA sequences stemming from a specific spot (i.e., cell) can be linked to the microscope image of the corresponding cell. However, until now, the MASC-seq method has only been applied to mammalian cells. The aim of this study was to test and adapt the MASC-seq method for application on unicellular eukaryotic plankton. We applied and optimized the method on three cultured plankton representatives, abundant in communities of aquatic environments, Phaeodactylum tricornutum (a diatom, silica and polysaccharide cell walls 23), Heterocapsa sp. (a dinoflagellate, cellulose thecal plates 24) and Tetrahymena thermophila (a ciliate, lipid membrane 25) which all have different size and diverse cell surface structures common to plankton. We optimized several steps in the protocol to make it more suitable for planktonic cells and compared the results from MASC-seq generated single cell transcriptomes to bulk RNA sequencing.
Project description:Community structure of photosynthetic picoeukaryotes differs in lakes with different trophic statuses along the middle-lower reaches of the Yangtze River Raw sequence reads