Project description:Primulina papillosa Z.B. Xin, W.C. Chou & F. Wen, a new species from limestone areas of Guangxi, China, is described and illustrated here. It morphologically resembles P. linearifolia (W.T. Wang) Yin Z. Wang and P. pseudolinearifolia W.B. Xu & K.F. Chung, but can be easily distinguished by some combined characters, especially its leaf blades densely papillose-hispid. We found only one population at the type locality with no more than 200 individuals, so that this new species is provisionally assessed as Critically Endangered (CR) using IUCN Criteria.
Project description:BackgroundLitchi stink-bug, Tessaratoma papillosa Drury (Hemiptera: Tessaratomidae), is one of the most widespread and destructive pest species on Litchi chinensis Sonn and Dimocarpus longan Lour in Southern China. Inappropriate use of chemical pesticides has resulted in serious environmental problems and food pollution. Generating an improved Integrated Pest Management (IPM) strategy for litchi stink-bug in orchard farming requires development of an effective biological control agent. Entomopathogenic fungi are regarded as a vital ecological factor in the suppression of pest populations under field conditions. With few effective fungi and pathogenic strains available to control litchi stink-bug, exploration of natural resources for promising entomopathogenic fungi is warranted.Methods & resultsIn this study, two pathogenic fungi were isolated from cadavers of adult T. papillosa. They were identified as Paecilomyces lilacinus and Beauveria bassiana by morphological identification and rDNA-ITS homogeneous analysis. Infection of T. papillosa with B. bassiana and P. lilacinus occurred initially from the antennae, metameres, and inter-segmental membranes. Biological tests showed that the two entomopathogenic fungi induced high mortality in 2nd and 5th instar nymphs of T. papillosa. B. bassiana was highly virulent on 2nd instar nymphs of T. papillosa, with values for cadaver rate, LC50 and LT50 of 88.89%, 1.92 × 107 conidia/mL and 4.34 days respectively.DiscussionThis study provides two valuable entomopathogenic fungi from T. papillosa. This finding suggests that the highly virulent P. lilacinus and B. bassiana play an important role in the biocontrol of T. papillosa in China. These pathogenic fungi had no pollution or residue risk, and could provide an alternative option for IPM of litchi stink-bug.
Project description:Studies on insect olfaction have increased our understanding of insect's chemosensory system and chemical ecology, and have improved pest control strategies based on insect behavior. In this study, we assembled the antennal transcriptomes of the lychee giant stink bug, Tessaratoma papillosa, by using next generation sequencing to identify the major olfaction gene families in this species. In total, 59 odorant receptors, 14 ionotropic receptors (8 antennal IRs), and 33 odorant binding proteins (28 classic OBPs and 5 plus-C OBPs) were identified from the male and female antennal transcriptomes. Analyses of tissue expression profiles revealed that all 59 OR transcripts, 2 of the 8 antennal IRs, and 6 of the 33 OBPs were primarily expressed in the antennae, suggesting their putative role in olfaction. The sex-biased expression patterns of these antenna-predominant genes suggested that they may have important functions in the reproductive behavior of these insects. This is the first report that provides a comprehensive resource to future studies on olfaction in the lychee giant stink bug.
Project description:Analysis of the air-dried marine red alga Laurencia papillosa, collected near Ras-Bakr at the Suez gulf (Red Sea) in Egypt delivered five new halogenated terpene derivatives: aplysiolic acid (1), 7-acetyl-aplysiol (2), aplysiol-7-one (3), 11,14-dihydroaplysia-5,11,14,15-tetrol (5a), and a new maneonene derivative 6, named 5-epi-maneolactone. The chemical structures of these metabolites were characterized employing spectroscopic methods, and the relative and absolute configurations were determined by comparison of experimental and ab initio-calculated NMR, NOE, ECD, and ORD data, and by X-ray diffraction of 2 and 6. The antimicrobial activities of the crude extract and compounds 1-3, 5a and 6 were studied.
Project description:Here we assessed population dynamics, natural enemy fauna (with emphasis on egg parasitoid), and population genetic structure (based on mitochondrial DNA) of the invasive litchi stink bug (LSB), Tessaratoma papillosa in Taiwan. Our major findings include: (1) fluctuations of LSB in numbers of adults, mating pairs, and egg masses over a 2-year period in Taiwan generally resemble those in the native populations; (2) Anastatus dexingensis and A. fulloi are among the most dominant LSB egg parasitoids, with the former consistently outnumbering the latter throughout Taiwan; (3) the presence of two genetically distinct clades suggests LSB in Taiwan most likely derived from multiple invasions. All these data practically improve our understanding of this invasive insect pest, particularly its ecological and genetic characteristics in the introduced area, which represents critical baseline information for the design of future integrated pest management strategies.