Project description:miRNA sponge, a special class of miRNA target, has been emerging as a pivotal player in miRNA mediated regulatory network. Currently, the identified miRNA sponge genes mostly act on sequestering conserved miRNAs (e.g. miR-7, miR-145), however, the existence, potential function and evolutionary process of miRNA sponge genes for species-specific miRNA, especially for human specific miRNA, are largely unknown. In this study, we conducted a systematic analysis including sponge gene identification and subsequent function and evolutionary analyses for an authentic human-specific miRNA, miR-941.
Project description:Exosomal and cellular miRNA expression levels were measured using a microRNA chip array or quantitative reverse transcription PCR (qRT-PCR). miR-24-3p was enriched in T-EXOs from the sera of NPC patients and NPC cells, which was correlated with worse disease-free survival (DFS). Exosomes (miR-24-3p-sponge-EXO) released from miR-24-3p-sponge-TW03 cells failed to inhibit T-cell proliferation and Th1 and Th17 differentiation or to induce Treg differentiation in vitro, compared with controlNC -sponge-EXO. Mechanistic analyses revealed that in miR-24-3p-sponge-EXO-treated T-cells, P-ERK, P-STAT1 and P-STAT3 were up-regulated, whereas P-STAT5 was down-regulated compared with controlNC-sponge-EXO-treated T-cells. FGF11 was identified as a direct target gene of miR-24-3p through in vivo and in vitro assessments. More importantly, the T-EXOs repressed FGF11 expression in T-cells during proliferation and differentiation. Interestingly, when FGF11 expression in T-cells was blocked, miR-24-3p-sponge-EXOs impeded shFGF11-T-cell proliferation and Th1 and Th17 differentiation but induced Treg differentiation, like controlNC-sponge-EXO. When FGF11 was knocked down in miR-24-3p-sponge-EXO-treated T-cells, neither P-ERK, P-STAT1 and P-STAT3 up-regulation or P-STAT5 down-regulation occurred. Interestingly, FGF11 expression in tumor-infiltrating lymphocytes (TILs) was significantly and positively correlated with the number of CD4+ and CD8+ TILs and predicted favorable DFS of the patients (p < 0.05).
Project description:Demosponge Cinachyrella cf cavernosa is an inter-tidal sponge. It is found in competition with soft coral Zoanthus sansibaricus and macroalgae Dictyota ciliatum. The effect of these two spatial competitors on the gene expression profile of the sponge is checked. Sponges are collected from three distinct situations, 1. sponge without competitors, 2. sponge in competition with algae, and 3. sponge in competition with soft coral. Each group has three biological replicates.
Project description:Tropical lagoon-inhabiting organisms live in highly irradiated ecosystems and are particularly susceptible to thermal stress resulting from climate change. However, despite living close to their thermal maxima, stress response mechanisms found in these organisms are poorly understood. We used a novel physiological-proteomic approach for sponges to describe the stress response mechanisms of the lagoon-inhabiting sponge Amphimedon navalis, when exposed to elevated seawater temperatures of +2 oC and +4 oC relative to a 26 oC ambient temperature for four weeks. After four weeks of thermal exposure, the buoyant weight of the sponge experienced a significant decline, while its pumping rates and oxygen consumption rates significantly increased. Proteome dynamics revealed 50 differentially abundant proteins in sponges exposed to elevated temperature, suggesting that shifts in the sponge proteome were potential drivers of physiological dysfunction. Thermal stress promoted an increase in detoxification proteins, such as catalase and glutathione-S-transferase, suggesting that an excess of reactive oxygen species in sponge cells were likely responsible for the significant increase in oxygen consumption. Elevated temperature also disrupted cellular growth and cell proliferation, promoting the loss of sponge biomass, and the high abundance of multiple alpha-tubulin chain proteins also indicated an increase in cytoskeletal activities within sponge cells, which may have induced the increase in sponge pumping rate. Our results show that sustained thermal exposure in susceptible lagoonal sponges may induce significant disruption of cellular homeostasis leading to physiological dysfunction, and that a combined physiological-proteomic approach may provide new insights into physiological functions and cellular processes occurring in sponges.
2021-11-15 | PXD027246 | Pride
Project description:The analysis of secondary metabolite gene clusters in sponge metagenomics
Project description:To investigate the activity of sponge enhancers in vertebrates transgenic experiments was performed where sponge enhancers were inserted into zebrafish embryos and stable lines generated abstract: Transcription factors (TFs) bind DNA enhancer sequences to regulate gene transcription in animals. Unlike TFs, the evolution of enhancers has been difficult to trace because of their fast evolution. Here, we take enhancers in the sponge Amphimedon queenslandica and test their activity in zebrafish and mouse. Of the five sponge enhancers assessed, three were located in conserved syntenic gene regions that are unique to animals (Islet–Scaper, Ccne1–Uri, Tdrd3–Diaph3). Despite diverging over 700 million years ago and a dearth of sequence identity, sponge enhancers are able to drive cell type-specific reporter gene expression in vertebrates. Analysis of the type and frequency of TF binding motifs in the sponge Islet enhancer allowed for the identification of homologous enhancers in human and mouse, which show remarkably similar reporter expression patterns to the sponge enhancer. These findings uncover an unexpected deep conservation of enhancers and suggest that enhancers established early in metazoan evolution can remain functional through retention of combinations of transcription factor binding motifs despite substantial sequence divergence.
Project description:miRNA sponge, a special class of miRNA target, has been emerging as a pivotal player in miRNA mediated regulatory network. Currently, the identified miRNA sponge genes mostly act on sequestering conserved miRNAs (e.g. miR-7, miR-145), however, the existence, potential function and evolutionary process of miRNA sponge genes for species-specific miRNA, especially for human specific miRNA, are largely unknown. In this study, we conducted a systematic analysis including sponge gene identification and subsequent function and evolutionary analyses for an authentic human-specific miRNA, miR-941.
Project description:miRNA sponge, a special class of miRNA target, has been emerging as a pivotal player in miRNA mediated regulatory network. Currently, the identified miRNA sponge genes mostly act on sequestering conserved miRNAs (e.g. miR-7, miR-145), however, the existence, potential function and evolutionary process of miRNA sponge genes for species-specific miRNA, especially for human specific miRNA, are largely unknown. In this study, we conducted a systematic analysis including sponge gene identification and subsequent function and evolutionary analyses for an authentic human-specific miRNA, miR-941.
Project description:miRNA sponge, a special class of miRNA target, has been emerging as a pivotal player in miRNA mediated regulatory network. Currently, the identified miRNA sponge genes mostly act on sequestering conserved miRNAs (e.g. miR-7, miR-145), however, the existence, potential function and evolutionary process of miRNA sponge genes for species-specific miRNA, especially for human specific miRNA, are largely unknown. In this study, we conducted a systematic analysis including sponge gene identification and subsequent function and evolutionary analyses for an authentic human-specific miRNA, miR-941.
Project description:Here, we applied a microarray-based metagenomics technology termed GeoChip 5.0 to examined functional gene structure of microbes in three biomes, including boreal, temperate and tropical area.