Project description:Low concentrations of pharmaceutical compounds were shown to induce transcriptional responses in isolated microorganisms, which could have consequences on ecosystem dynamics. In order to test if these transcriptional responses could also be observed in complex river microbial communities, biofilm reactors were inoculated with water from two distinct rivers and supplemented with environmentally relevant doses of four pharmaceutical products (erythromycin-ER, gemfibrozil-GM, sulfamethazine-SN and sulfamethoxazole-SL). To follow the expression of functional genes, we constructed a 9,600 features anonymous DNA microarray platform onto which cDNA from the various biofilms was hybridized. The reactor design for biofilm development has been previously described (Lawrence et al., 2004; Lawrence et al., 2000). Two duplicate experiments were carried out, with reactors being inoculated with either water from the WC (nutrient rich) or the SSR (nutrient poor). Treatments consisted in the addition of various pharmaceutical compounds: 1 µg l-1 erythromycin (ER), 1 µg l-1 gemfibrozil (GM), 0.5 µg l-1 sulfamethazine (SN), 0.5 µg l-1 sulfamethoxazole (SL). Nothing was added to control reactors (CO). All treatments were replicated independently three times. A reference sample (composite sample from Wascana Creek reactors used to construct the microarray) was hybridized (Cy5) on each slide.
Project description:Low concentrations of pharmaceutical compounds were shown to induce transcriptional responses in isolated microorganisms, which could have consequences on ecosystem dynamics. In order to test if these transcriptional responses could also be observed in complex river microbial communities, biofilm reactors were inoculated with water from two distinct rivers and supplemented with environmentally relevant doses of four pharmaceutical products (erythromycin-ER, gemfibrozil-GM, sulfamethazine-SN and sulfamethoxazole-SL). To follow the expression of functional genes, we constructed a 9,600 features anonymous DNA microarray platform onto which cDNA from the various biofilms was hybridized.
2010-07-06 | GSE20501 | GEO
Project description:Variations in microorganisms stimulated by salinity
Project description:To understand the effect of HDA19 deficiency in hda5/14/15/18 (quad) under salinity stress conditions, hda19, quad, hda5/14/15/18/19 (quint) mutants and control (Col-0) plants were analyzed under normal and salinity stress conditions using Arabidopsis custom microarrays (GEO array platform: GPL22706).
Project description:Population dynamics of methanogenic genera was investigated in pilot anaerobic digesters. Cattle manure and two-phase olive mill wastes were codigested at a 3:1 ratio in two reactors operated at 37 ï¾°C and 55 ï¾°C. Other two reactors were run with either residue at 37 ï¾°C. Sludge DNA extracted from samples taken from all four reactors on days 4, 14 and 28 of digestion was used for hybridisation with the AnaeroChip, an oligonucleotide microarray targeting those groups of methanogenic archaea that are commonly found under mesophilic and thermophilic conditions (Franke-Whittle et al. 2009, in press, doi:10.1016/j.mimet.2009.09.017).
Project description:In low rainfall regions soils are naturally conditioned with frequent co-occurrence of salinity and alkalinity. Plant salinity responses both at physiological and molecular level have been extensively researched. However, effects of the combined treatment of alkaline salinity that could greatly reduce plant growth and the mechanisms responsible for tolerance remain indeterminate. In Brassica juncea, large reductions in biomass and increased leaf Na+ concentration under alkaline salinity indicates that the combined treatment had greater negative effect than salinity on both growth and the physiological responses of the plant. To determine molecular mechanisms potentially controlling adaptive tolerance responses to salinity and alkaline salinity, the moderately tolerant genotype NDR 8501 was further investigated using microarray analysis. The transcripts of treated leaf tissues verses those of the untreated control sample were analysed after prolonged stress of four weeks. In total, 528 salinity responsive and 1245 alkaline salinity responsive genes were indentified and only 101 genes were expressed jointly in either of the two treatments. Transcription of 37% more genes involved in response to alkaline salinity than salinity alone, which suggests the increased impact and severity of the combined stress on the plant, indicating the transcription of a far greater number of genes likely involved in mitigation and damage control. Transcription of KUP2 and KUP7 genes involved in potassium homeostasis under salinity alone and NHX1 and ENH1 genes for ion (K+ and Na+) homeostasis under alkaline salinity, clearly demonstrated that different genes and genetic pathways are involved in response to each stress. They further provide supporting evidence for the physiological responses that occur in the plant, with massive reprogramming of the transcriptome leading to partial ion exclusion, shuttling and compartmentation.