Project description:Transfected siRNAs regulate numerous transcripts sharing limited complementarity to the RNA duplex. This unintended (“off-target”) silencing can hinder the use of RNAi to define gene function. Here we describe position-specific, sequence-independent chemical modifications that reduced silencing of partially-complementary transcripts by all siRNAs tested. Silencing of perfectly-matched targets was unaffected by these modifications. The chemical modification also reduced off-target phenotypes in growth inhibition studies. Key to the modification was 2’-O-methyl ribosyl substitution at position 2 in the guide strand, which reduced silencing of most off-target transcripts with complementarity to the seed region of the siRNA guide strand. The sharp position-dependence of 2’-O-methyl ribosyl modification contrasts with the broader position dependence of base pair substitutions within the seed region, suggesting a role for position 2 of the guide strand distinct from its effects on pairing to target transcripts. Keywords: Microarray analysis, chemical modification walk, dose response
Project description:Small RNAs regulate chromatin modifications such as DNA methylation and gene silencing across eukaryotic genomes. In plants, RNA-directed DNA methylation (RdDM) requires 24-nucleotide (nt) small RNAs (siRNAs) that bind ARGONAUTE4 (AGO4) and target genomic regions for silencing. It also requires non-coding RNAs transcribed by RNA POLYMERASE V (Pol V), although their function is largely unknown. We utilized a modified global nuclear run-on (GRO) protocol followed by deep sequencing to capture Pol V nascent transcripts genome-wide. We uncovered unique characteristics of Pol V RNAs, including a uracil (U) common at position 10. This uracil was complementary to the 5’ adenine found in many AGO4-bound 24-nt siRNAs and was eliminated in an siRNA-deficient mutant. This indicates co-transcriptional slicing of Pol V transcripts by AGO4-bound siRNAs. Pol V transcript slicing also required the elongation factor SPT5L. These results highlight a novel step in RNA-mediated transcriptional gene silencing, which is a conserved process in many eukaryotes.
Project description:Transfected siRNAs and miRNAs regulate numerous transcripts that have only limited complementarity to the active strand of the RNA duplex. This process reflects natural target regulation by miRNAs, but is an unintended (“off-target”) consequence of siRNA-mediated silencing. Here we demonstrate that this unintended off-target silencing is widespread, and occurs in a manner reminiscent of target silencing by miRNAs. A high proportion of unintended transcripts silenced by siRNAs showed 3’ UTR sequence complementarity to the seed region of the siRNA. Base mismatches within the siRNA seed region reduced the set of original off-target transcripts but generated new sets of silenced transcripts with sequence complementarity to the mismatched seed sequence. An inducible shRNA silenced a subset of transcripts that were silenced by an siRNA of the same sequence, demonstrating that unintended silencing is sequence-mediated and is independent of delivery method. In all cases, off-target transcript silencing was accompanied by loss of the corresponding protein and occurred with similar dependence on siRNA concentration as silencing of the target transcript. These results demonstrate that short stretches of sequence complementarity to the seed region of the siRNA are key to the silencing of unintended transcripts, and that this limits the specificity of siRNA-mediated transcript silencing. Because these off-target events are sequence-dependent, inclusion of multiple independent siRNAs to the target of interest can help to distinguish true positives from false positives in functional genetic analyses. Keywords: siRNA, RNAi, sequence alignment, off-target, seed region
Project description:Transfected siRNAs and miRNAs regulate numerous transcripts that have only limited complementarity to the active strand of the RNA duplex. This process reflects natural target regulation by miRNAs, but is an unintended (â??off-targetâ??) consequence of siRNA-mediated silencing. Here we demonstrate that this unintended off-target silencing is widespread, and occurs in a manner reminiscent of target silencing by miRNAs. A high proportion of unintended transcripts silenced by siRNAs showed 3â?? UTR sequence complementarity to the seed region of the siRNA. Base mismatches within the siRNA seed region reduced the set of original off-target transcripts but generated new sets of silenced transcripts with sequence complementarity to the mismatched seed sequence. An inducible shRNA silenced a subset of transcripts that were silenced by an siRNA of the same sequence, demonstrating that unintended silencing is sequence-mediated and is independent of delivery method. In all cases, off-target transcript silencing was accompanied by loss of the corresponding protein and occurred with similar dependence on siRNA concentration as silencing of the target transcript. These results demonstrate that short stretches of sequence complementarity to the seed region of the siRNA are key to the silencing of unintended transcripts, and that this limits the specificity of siRNA-mediated transcript silencing. Because these off-target events are sequence-dependent, inclusion of multiple independent siRNAs to the target of interest can help to distinguish true positives from false positives in functional genetic analyses. For details, please see A.L. Jackson, et al. 2006. RNA 12(7): 1179-1187. We used consensus genelists for clustering. Please see attached tables for genelists.
Project description:siRNAs mediate sequence-specific gene silencing in cultured mammalian cells but also silence unintended transcripts. Many siRNA off-target transcripts match the guide-strand ‘‘seed region,’’ similar to the way microRNAs match their target sites. The extent to which this seed-matched, microRNA-like, off-target silencing affects the specificity of therapeutic siRNAs in vivo is currently unknown. Here, we compare microRNA-like off-target regulations in mouse liver in vivo with those seen in cell culture for a series of therapeutic candidate siRNAs targeting Apolipoprotein B (APOB). Each siRNA triggered regulation of consistent microRNA-like off-target transcripts in mouse livers and in cultured mouse liver tumor cells. In contrast, there was only random overlap between microRNA-like off-target transcripts from cultured human and mouse liver tumor cells. Therefore, siRNA therapeutics may trigger microRNA-like silencing of many unintended targets in vivo, and the potential toxicities caused by these off-target gene regulations cannot be accurately assessed in rodent models. Hepa1-6 mouse hepatoma cell line and HUH7 and PLC/PRF/5 human hepatoma cell lines were transfected in 6-well plates using Lipofectamine RNAiMAX and siRNA duplexes at a final concentration of 10 nM. For in vitro analysis, RNA was extracted at 6, 12, 24, and 48 h post-transfection. For in vivo studies, mouse livers were harvested 3 d following a single administration of APOB siRNA (3 mg/kg) formulated in lipid nanoparticles. For details, please see: J. Burchard, A.L. Jackson, V. Malkov, R.H.V. Needham, Y. Tan, S.R. Bartz, H. Dai, A.B. Sachs and P.S. Linsley. microRNA-like off-target transcript regulation by siRNAs is species specific. RNA 15 (2009)
Project description:In the nematode Caenorhabditis elegans, different small RNA-dependent gene silencing mechanisms act in the germline to initiate transgenerational gene silencing. Piwi-interacting RNAs (piRNAs) can initiate transposon and gene silencing by acting upstream of endogenous short interfering RNAs (siRNAs), which engage a nuclear RNA interference (RNAi) pathway to trigger transcriptional gene silencing. Once gene silencing has been established, it can be stably maintained over multiple generations without the requirement of the initial trigger and is also referred to as RNAe or paramutation. This heritable silencing depends on the integrity of the nuclear RNAi pathway. However, the exact mechanism by which silencing is maintained across generations is not understood.Here we demonstrate that silencing of piRNA targets involves the production of two distinct classes of small RNAs with different genetic requirements. The first class, secondary siRNAs, are localized close to the direct target site for piRNAs. Nuclear import of the secondary siRNAs by the Argonaute HRDE-1 leads to the production of a distinct class of small RNAs that map throughout the transcript, which we term tertiary siRNAs. Both classes of small RNAs are necessary for full repression of the target gene and can be maintained independently of the initial piRNA trigger. Consistently, we observed a form of paramutation associated with tertiary siRNAs. Once paramutated, a tertiary siRNA generating allele confers dominant silencing in the progeny regardless of its own transmission, suggesting germline-transmitted siRNAs are sufficient for multigenerational silencing.
Project description:Small interfering RNAs (siRNAs) conjugated to a trivalent N-acetylgalactosamine (GalNAc) ligand are being evaluated in investigational clinical studies for a variety of indications. The typical development candidate selection process includes evaluation of the most active compounds for toxicity in rats at pharmacologically-exaggerated doses. The subset of GalNAc-siRNAs that show rat hepatotoxicity is not advanced to clinical development. Potential mechanisms of hepatotoxicity include toxicities associated with the intracellular accumulation of oligonucleotides and their metabolites, RNA interference (RNAi)-mediated hybridization-based off-target effects, and/or perturbation of endogenous RNAi pathways. Here we show that rodent hepatotoxicity observed at supratherapeutic exposures can be largely attributed to RNAi-mediated off-target effects, but not chemical modifications or the perturbation of RNAi pathways. Furthermore, these off-target effects can be mitigated by modulating seed-pairing using a thermally destabilizing chemical modification, which significantly improves the safety profile of a GalNAc-siRNA in rat and may minimize the occurrence of hepatotoxic siRNAs across species.
Project description:Small RNAs regulate chromatin modifications such as DNA methylation and gene silencing across eukaryotic genomes. In plants, RNA-directed DNA methylation (RdDM) requires 24-nucleotide (nt) small RNAs (siRNAs) that bind ARGONAUTE4 (AGO4) and target genomic regions for silencing. It also requires non-coding RNAs transcribed by RNA POLYMERASE V (Pol V), that likely serve as scaffolds for binding of AGO4/siRNA complexes. Here we utilized a modified global nuclear run-on (GRO) protocol followed by deep sequencing to capture Pol V nascent transcripts genome-wide. We uncovered unique characteristics of Pol V RNAs, including a uracil (U) common at position 10. This uracil was complementary to the 5’ adenine found in many AGO4-bound 24-nt siRNAs and was eliminated in an siRNA-deficient mutant as well as in the ago4/6/9 triple mutant, suggesting that the +10U signature is due to siRNA-mediated co-transcriptional slicing of Pol V transcripts. Expressing wild-type AGO4 in ago4/6/9 was able to restore slicing of Pol V transcripts but a catalytically inactive AGO4 mutant did not correct the slicing defect. We also found that Pol V transcript slicing required the little understood elongation factor SPT5L. These results highlight the importance of Pol V transcript slicing in RNA-mediated transcriptional gene silencing, which is a conserved process in many eukaryotes.