Project description:Ovarian aging leads to diminished fertility, dysregulated endocrine signaling, and increased chronic disease burden. These effects begin to emerge long before follicular exhaustion. Around 35 years old, women experience a sharp decline in fertility, corresponding to declines in oocyte quality. However, the field lacks a cellular map of the transcriptomic changes in the aging ovary to identify drivers of ovarian decline. To fill this gap, we performed single-cell RNA sequencing on ovarian tissue from young (3-month-old) and reproductively aged (9-month-old) mice. Our analysis revealed a doubling of immune cells in the aged ovary, with T and B lymphocyte proportions increasing most. We also discovered an age-related upregulation of alternative macrophage and downregulation of collagenase pathways in stromal fibroblasts. Overall, follicular cells (especially granulosa and theca) display stress response, immunogenic, and fibrotic signaling pathway inductions with aging. These changes are more exaggerated in the atretic granulosa cells but are also observed in healthy antral and preantral granulosa cells. Moreover, we did not observe age-related changes in markers of cellular senescence in any cellular population with advancing age, despite specific immune cells expressing senescence-related genes across both timepoints. This report raises several new hypotheses that could be pursued to elucidate mechanisms responsible for ovarian aging phenotypes.
Project description:We aimed to create an ovary cell atlas using publicly available RNA-seq data. To complement the data we sequenced 2 ovary tissue samples from patients undergoing elective surgery at the JR hospital in Oxford. We applied single-nucei sequencing using the 10x Chromium technology.
Project description:The airways conduct gases to and from the gas-exchanging alveoli of the lung and are the site of age-related diseases, such as chronic obstructive pulmonary disease, asthma, and bronchogenic carcinoma. Here we set out to study the effects of aging on the cellular composition and gene expression of murine airway. We present a comprehensive single-cell RNA-sequencing atlas of tracheas from young (2 month) and aged (24 month) mice, comprising diverse populations of cells, including epithelial, endothelial, immune, fibroblast, and cartilage cells.
Project description:Aging is a multifactorial process with significant functional alterations of the human body including endocrinal systems which control the whole-body physiology and metabolism. In this vein, aging-induced decline of endocrine function are associated with multiple physiological and metabolic diseases. However, aging-associated molecular shifts in the pituitary gland, the central organ of the endocrine system, have not been dissected systemically. In this study, we conducted single-cell transcriptomic analysis of the anterior pituitary gland by comparing old and young male mice. Single-cell transcriptomics not only increased the resolution for clustering of various cell types in the pituitary gland, but also enabled detailed analysis of differential expression and intercellular communication caused by aging. In summary, our study constructed the first single-cell transcriptomic atlas of pituitary aging and identified associated features of in a single-cell level, providing resources to develop novel potential therapeutic targets for aging-associated endocrine dysfunction.