Project description:Bacteria generally possess multiple σ factors that, based on structural and functional similarity, divide into two families: σD and σN. Among the seven σ factors in Escherichia coli, six belongs to the σD family. Each σ factor recognizes a group of promoters, providing effective control of differential gene expression. Many studies have shown that σ factors of the σD family compete with each other for function. In contrast, the competition between σN and σD families has yet to be fully explored. Here we report a global antagonistic effect on gene expression between two alternative σ factors, σN (RpoN) and σS (RpoS), a σD family protein. Mutations in rpoS and rpoN inversely affected a number of cellular traits, such as expression of flagellar genes, σN-controlled growth on poor nitrogen sources, and σS-directed expression of acid phosphatase AppA. Transcriptome analysis reveals that 40% of genes in the RpoN regulon were under reciprocal RpoS control. Furthermore, loss of RpoN led to increased levels of RpoS, while RpoN levels were unaffected by rpoS mutations. Expression of the flagellar σF factor (FliA), another σD family protein, was controlled positively by RpoN but negatively by RpoS. These findings unveil a complex regulatory interaction among σN, σS and σF, and underscore the need to employ systems biology approaches to assess the effect of such interaction of σ factors on cellular functions, including motility, nutrient utilization, and stress response.
Project description:RpoS, an alternative sigma factor, is critical for stress response in Escherichia coli. The RpoS regulon expression has been well characterized in rich media that support fast growth and high growth yields. In contrast, though RpoS levels are high in minimal media, how RpoS functions under such conditions has not been clearly resolved. In this study, we compared the global transcriptional profiles of wild type and an rpoS mutant of E. coli grown in glucose minimal media using microarray analyses. The expression of over 200 genes was altered by loss of RpoS in exponential and stationary phases, with only 48 genes common to both conditions. The nature of the RpoS-controlled regulon in minimal media was substantially different from that expressed in rich media. Specifically, the expression of many genes encoding regulatory factors (e.g., hfq, csrA and rpoE) and genes in metabolic pathways (e.g., lysA, lysC and hisD) were regulated by RpoS in minimal media. In early exponential phase, protein levels of RpoS in minimal media were much higher than that in LB media, which may at least partly account for the observed difference in the expression of RpoS-controlled genes. Expression of genes required for flagellar function and chemotaxis was elevated in the rpoS mutant. Western blot analyses show that the flagella sigma factor FliA was expressed much higher in rpoS mutants than in WT in all phase of growth. Consistent with this, the motility of rpoS mutants was enhanced relative to WT. In conclusion, RpoS and its controlled regulators form a complex regulatory network that mediates the expression of a large regulon in minimal media.
Project description:While global transcription factors (TFs) have been studied extensively in Escherichia coli model strains, conservation and diversity in TF regulation between strains is still unknown. Here we use a combination of ChIP-exo--to define ferric uptake regulator (Fur) binding sites--and differential gene expression--to define the Fur regulon in nine E. coli strains. We then define a pan-regulon consisting of 469 target genes that includes all Fur target genes in all nine strains. The pan-regulon is then divided into the core regulon (target genes found in all the strains, n=36), the accessory regulon (target found in two to eight strains, n=158) and the unique regulon (target genes found in one strain, n=275). Thus, there is a small set of Fur regulated genes common to all nine strains, but a large number of regulatory targets unique to a particular strain. Many of the unique regulatory targets are genes unique to that strain. This first-established pan-regulon reveals a common core of conserved regulatory targets and significant diversity in transcriptional regulation amongst E. coli strains, reflecting diverse niche specification and strain history.
Project description:Bacteria generally possess multiple σ factors that, based on structural and functional similarity, divide into two families: σD and σN. Among the seven σ factors in Escherichia coli, six belongs to the σD family. Each σ factor recognizes a group of promoters, providing effective control of differential gene expression. Many studies have shown that σ factors of the σD family compete with each other for function. In contrast, the competition between σN and σD families has yet to be fully explored. Here we report a global antagonistic effect on gene expression between two alternative σ factors, σN (RpoN) and σS (RpoS), a σD family protein. Mutations in rpoS and rpoN inversely affected a number of cellular traits, such as expression of flagellar genes, σN-controlled growth on poor nitrogen sources, and σS-directed expression of acid phosphatase AppA. Transcriptome analysis reveals that 40% of genes in the RpoN regulon were under reciprocal RpoS control. Furthermore, loss of RpoN led to increased levels of RpoS, while RpoN levels were unaffected by rpoS mutations. Expression of the flagellar σF factor (FliA), another σD family protein, was controlled positively by RpoN but negatively by RpoS. These findings unveil a complex regulatory interaction among σN, σS and σF, and underscore the need to employ systems biology approaches to assess the effect of such interaction of σ factors on cellular functions, including motility, nutrient utilization, and stress response. Precise deletion mutants of rpoS or rpoN of MG1655 were constructed and employed in this study. Cultures were inoculated in triplicate in M9 minimal media (0.2% glucose) at a starting OD of 0.0001 and grown aerobically at 37C. Cultures were harvested at OD600 = 0.3 in exponential phase. For RNA extraction, cultures were mixed directly with a boiling lysis buffer containing SDS and EDTA followed by acidic hot phenol to minimize RNA degradation. RNA samples were hybridized to Affymetrix E. coli Genome 2.0 Array according to Affymetrix's standard protocols.
Project description:YbjN, an enterobacteria-specific protein, is a multicopy suppressor of ts9 temperature sensitivity in Escherichia coli. Microarray study revealed that the expression level of ybjN was inversely correlated with the expression of flagellar, fimbrial and acid resistance genes. Over-expression of ybjN significantly down-regulated genes involved in the citric acid cycle, glycolysis, the glyoxylate shunt, oxidative phosphorylation, and amino acid and nucleotide metabolism. On the other hand, over-expression of ybjN up-regulated toxin-antitoxin modules, the SOS responsive pathway, cold shock proteins and starvation-induced transporter genes. Our results collectively suggest that YbjN may play important roles in regulating bacterial multicellular behaviors, metabolism and survival under various stress conditions in Es. coli.
Project description:The marine bacterium Vibrio fischeri requires flagellar motility to undergo symbiotic initiation with its host, the Hawaiian bobtail squid Euprymna scolopes. We sought to identify the genes activated by the sigma54-dependent flagellar master regulator, FlrA, in V. fischeri, thereby determining the flagellar regulon in this model symbiont.
Project description:To investigate the regulatory targets of the RegR virulence regulon of rabbit specific enteropathogenic Escherichia coli strain E22
Project description:Successful pathogens must be able to protect themselves against reactive nitrogen species generated either as part of host defence mechanisms, or as products of their own metabolism. The regulatory protein, NsrR (a member of the Rrf2 family of transcription factors), plays key roles in this stress response. Microarray analysis was carried out to reveal the regulon of NsrR. Keywords: Response to repressor titration and different growth conditions
Project description:YbjN, an enterobacteria-specific protein, is a multicopy suppressor of ts9 temperature sensitivity in Escherichia coli. Microarray study revealed that the expression level of ybjN was inversely correlated with the expression of flagellar, fimbrial and acid resistance genes. Over-expression of ybjN significantly down-regulated genes involved in the citric acid cycle, glycolysis, the glyoxylate shunt, oxidative phosphorylation, and amino acid and nucleotide metabolism. On the other hand, over-expression of ybjN up-regulated toxin-antitoxin modules, the SOS responsive pathway, cold shock proteins and starvation-induced transporter genes. Our results collectively suggest that YbjN may play important roles in regulating bacterial multicellular behaviors, metabolism and survival under various stress conditions in Es. coli. A total of 8 samples were analyzed: E. coli wild type strain (2 replicates); E. coli ybjN mutant strain (3 replicates); E. coli ybjN over-expression strain (3 replicates).