Project description:Obesity and physical inactivity have a profound impact on skeletal muscle metabolism. In the present work, we have investigated differences in protein expression and energy metabolism in primary human skeletal muscle cells established from lean donors (BMI<25 kg/m2) and individuals with obesity (BMI>30 kg/m2). Furthermore, we have studied the effect of fatty acid pretreatment on energy metabolism in myotubes from these donor groups. Alterations in protein expression were investigated using proteomic analysis, and energy metabolism was studied using radiolabeled substrates. Gene Ontology enrichment analysis showed that glycolytic, apoptotic, and hypoxia pathways were upregulated, whereas the pentose phosphate pathway was downregulated in myotubes from donors with obesity compared to myotubes from lean donors. Moreover, fatty acid, glucose, and amino acid uptake were increased in myotubes from individuals with obesity. However, fatty acid oxidation was reduced, glucose oxidation was increased in myotubes from subjects with obesity compared to cells from lean. Pretreatment of myotubes with palmitic acid (PA) or eicosapentaenoic acid (EPA) for 24 h increased glucose oxidation and oleic acid uptake. EPA pretreatment increased the glucose and fatty acid uptake and reduced leucine fractional oxidation in myotubes from donors with obesity. In conclusion, these results suggest that myotubes from individuals with obesity showed increased fatty acid, glucose, and amino acid uptake compared to cells from lean donors. Furthermore, myotubes from individuals with obesity had reduced fatty acid oxidative capacity, increased glucose oxidation, and a higher glycolytic reserve capacity compared to cells from lean donors. Fatty acid pretreatment enhances glucose metabolism, and EPA reduces oleic acid and leucine fractional oxidation in myotubes from donor with obesity, suggesting increased metabolic flexibility after EPA treatment
Project description:The detachment of epithelial cells, but not cancer cells, causes anoikis due to reduced energy production. Invasive tumor cells generate three splice variants of the metastasis gene osteopontin. The cancer-specific form osteopontin-c supports anchorage-independence through inducing oxidoreductases and upregulating intermediates/enzymes in the hexose monophosphate shunt, glutathione cycle, glycolysis, glycerol phosphate shuttle, and mitochondrial respiratory chain. Osteopontin-c signaling upregulates glutathione (consistent with the induction of the enzyme GPX-4), glutamine and glutamate (which can feed into the tricarboxylic acid cycle). Consecutively, the cellular ATP levels are elevated. The elevated creatine may be synthesized from serine via glycine and also supports the energy metabolism by increasing the formation of ATP. Metabolic probing with N-acetyl-L-cysteine, L-glutamate, or glycerol identified differentially regulated pathway components, with mitochondrial activity being redox dependent and the creatine pathway depending on glutamine. The effects are consistent with a stimulation of the energy metabolism that supports anti-anoikis. Our findings imply a synergism in cancer cells between osteopontin-a, which increases the cellular glucose levels, and osteopontin-c, which utilizes this glucose to generate energy. mRNA profiles of MCF-7 cells transfected with osteopontin-a, osteopontin-c and vector control were generated by RNA-Seq, in triplicate, by Illumina HiSeq.
Project description:Permafrost soils are extreme environments that exert low-temperature, desiccation and starvation stress on bacteria over thousands to millions of years. To understand how Psychrobacter arcticus 273-4 survived for > 20,000 years in permafrost, transcriptome analysis was performed during growth at 22°C, 17°C, 0°C, and -6°C using a mixed effects ANOVA model. Genes for transcription, translation, energy production and most biosynthetic pathways were down-regulated at low temperatures. Evidence of isozyme exchange was detected over temperature for D-alanyl-D-alanine carboxypeptidases (dac1 and dac2), DEAD-box RNA helicases (csdA and Psyc_0943) and energy efficient substrate incorporation pathways for ammonium and acetate. Specific functions were compensated by up-regulation at low temperature including genes for the biosynthesis of proline, tryptophan, methionine, and histidine. RNases and peptidases were generally up-regulated at low temperatures. Changes in energy metabolism, amino acid metabolism, and RNase gene expression were consistent with induction of the stringent response by relA activity. In contrast to results observed in other psychrophiles and mesophiles, only clpB and hsp33 were up-regulated at low temperature with no up-regulation of other chaperones and peptidyl-prolyl isomerases. Knockout mutants of relA, csdA, and dac2 were all deficient in low temperature growth, but a mutant in dac1 was deficient in growth at 17°C. The combined data suggest that the basal biological machinery including translation, transcription and energy metabolism are well adapted to function across the -6°C to 22°C growth range of P. arcticus and temperature compensation by gene expression was employed to address specific challenges to low-temperature growth.