Project description:Polycystic ovary syndrome (PCOS), the most common cause of anovulatory infertility, is characterized by increased ovarian androgen production, arrested follicle development, and is frequently associated with insulin resistance. These PCOS phenotypes are associated with exaggerated ovarian responsiveness to FSH and increased pregnancy loss. To examine whether the perturbations in follicle growth and the intrafollicular environment affects development of the mature PCOS oocyte, genes that are differentially expressed in PCOS compared to normal oocytes were defined using microarray analysis. This analysis detected approximately 8000 transcripts. Hierarchical clustering and principal component analysis revealed differences in global gene expression profiles between normal and PCOS oocytes. 374 genes had a statistically-significant increase or decrease in mRNA abundance in PCOS oocytes. A subset of these genes was associated with chromosome alignment and segregation during mitosis and/or meiosis, suggesting that increased mRNAs for these proteins may negatively affect oocyte maturation and/or early embryonic development. Of the 374 differentially expressed genes, 68 contained putative androgen receptor, retinoic acid receptor, and/or peroxisome proliferating receptor gamma binding sites, including 9 of the genes involved in chromosome alignment and segregation. These analyses demonstrated that normal and PCOS oocytes that are morphologically indistinguishable and of high quality exhibit different gene expression profiles. Furthermore, altered mRNA levels in the PCOS oocyte may contribute to defects in meiosis and/or mitosis which might impair oocyte competence for early development and therefore contribute to poor pregnancy outcome in PCOS. Experiment Overall Design: A single MII oocyte, defined by one polar body in the perivitelline space and no visible nuclear structure in the cytoplasm, was collected from 6 individual NL and 6 individual PCOS ovaries, placed immediately in TRIzol (Sigma, St. Louis MO), and stored at -80 C until further study. Total RNA was isolated from each oocyte and subjected to three rounds of linear amplification with the Ovation Biotin RNA Amplification and Labeling System (NuGen Technologies, San Carlos CA) per the manufacturerâs instructions. RNA from the GeneChip Eukaryotic Poly-A RNA Control Kit (Affymetrix, Santa Clara CA) was amplified and labeled under the same conditions for a positive control. Affymetrix GeneChip Human Genome U133 Plus 2.0 microarray chips (Affymetrix, Santa Clara, CA) were hybridized at the University of Pennsylvania Microarray Core Facility. Briefly, the linear-amplified, biotin-labled cDNA from 6 NL (N1-N6) and 6 PCOS (P1-P6) oocytes was hybridized to individual Affymetrix U133 chips. The fluorescence intensity of each chip was normalized to a trimmed mean signal of 150. Each transcript on the U133 chip was defined as present or absent in each oocyte sample using the Affymetrix Microarray Suite 5.0.
Project description:Polycystic ovary syndrome (PCOS), the most common cause of anovulatory infertility, is characterized by increased ovarian androgen production, arrested follicle development, and is frequently associated with insulin resistance. These PCOS phenotypes are associated with exaggerated ovarian responsiveness to FSH and increased pregnancy loss. To examine whether the perturbations in follicle growth and the intrafollicular environment affects development of the mature PCOS oocyte, genes that are differentially expressed in PCOS compared to normal oocytes were defined using microarray analysis. This analysis detected approximately 8000 transcripts. Hierarchical clustering and principal component analysis revealed differences in global gene expression profiles between normal and PCOS oocytes. 374 genes had a statistically-significant increase or decrease in mRNA abundance in PCOS oocytes. A subset of these genes was associated with chromosome alignment and segregation during mitosis and/or meiosis, suggesting that increased mRNAs for these proteins may negatively affect oocyte maturation and/or early embryonic development. Of the 374 differentially expressed genes, 68 contained putative androgen receptor, retinoic acid receptor, and/or peroxisome proliferating receptor gamma binding sites, including 9 of the genes involved in chromosome alignment and segregation. These analyses demonstrated that normal and PCOS oocytes that are morphologically indistinguishable and of high quality exhibit different gene expression profiles. Furthermore, altered mRNA levels in the PCOS oocyte may contribute to defects in meiosis and/or mitosis which might impair oocyte competence for early development and therefore contribute to poor pregnancy outcome in PCOS. Keywords: disease state analysis
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:Lean polycystic ovary syndrome (PCOS) women have a greater proportion of android (abdominal) fat, increased numbers of small subcutaneous (SC) abdominal adipocytes and preferential intra-abdominal fat accumulation. This study examines whether abnormal gene expression of SC abdominal adipose stem cells (ASCs) from lean PCOS women underlies this altered abdominal adipose structure-function. In this dataset, we include the expression data obtained from PCOS and NL subcutaneous adipose tissue. Differential expression of at least 1.5-fold change (P<0.05) were obtained in 120 genes (48 upregulated, 72 downregulated) of SC abdominal ASCs from PCOS versus NL women
Project description:We have sequenced miRNA libraries from human embryonic, neural and foetal mesenchymal stem cells. We report that the majority of miRNA genes encode mature isomers that vary in size by one or more bases at the 3’ and/or 5’ end of the miRNA. Northern blotting for individual miRNAs showed that the proportions of isomiRs expressed by a single miRNA gene often differ between cell and tissue types. IsomiRs were readily co-immunoprecipitated with Argonaute proteins in vivo and were active in luciferase assays, indicating that they are functional. Bioinformatics analysis predicts substantial differences in targeting between miRNAs with minor 5’ differences and in support of this we report that a 5’ isomiR-9-1 gained the ability to inhibit the expression of DNMT3B and NCAM2 but lost the ability to inhibit CDH1 in vitro. This result was confirmed by the use of isomiR-specific sponges. Our analysis of the miRGator database indicates that a small percentage of human miRNA genes express isomiRs as the dominant transcript in certain cell types and analysis of miRBase shows that 5’ isomiRs have replaced canonical miRNAs many times during evolution. This strongly indicates that isomiRs are of functional importance and have contributed to the evolution of miRNA genes
Project description:Objective: The etiology of PCOS is mostly unknown. Existing data support both genetic and environmental factors in its pathogenesis. Design: Prospective case - control study. Setting: University Hospital. Patients: 25 patients undergoing IVF-ICSI treatment. Intervention: Genome-wide oligonucleotide microarray technology was used to study differential gene-expression patterns of cultured human cumulus cells from IVF patients divided into 4 groups according to disease state (PCOS vs. Control) and BMI (Obese vs. Lean). Results: Two differential PCOS gene expression profiles were established: Lean-Type was formed by comparing PCOS lean (PL) vs. non-PCOS lean (NL) individuals; Obese-Type was formed by comparing PCOS obese (PO) vs. non-PCOS (NO) obese patients. Conclusions: Different molecular pathways are associated with PCOS in Lean and Obese individuals, as demonstrated by gene expression profiling of cumulus cells. Our findings provide insights into the molecular pathogenesis of PCOS. We used microarrays to study the gene expression of human cultured cumulus cells. We compared the genes expression of lean PCOS, Obese PCOS, lean controls and obese controls. Different molecular pathways are associated with PCOS in Lean and Obese patients. Keywords: disease state analysis
Project description:As the evolution of miRNA genes has been found to be one of the important factors in formation of the modern type of man, we performed a comparative analysis of the evolution of miRNA genes in two archaic hominines, Homo sapiens neanderthalensis and Homo sapiens denisova, and elucidated the expression of their target mRNAs in bain.A comparative analysis of the genomes of primates, including species in the genus Homo, identified a group of miRNA genes having fixed substitutions with important implications for the evolution of Homo sapiens neanderthalensis and Homo sapiens denisova. The mRNAs targeted by miRNAs with mutations specific for Homo sapiens denisova exhibited enhanced expression during postnatal brain development in modern humans. By contrast, the expression of mRNAs targeted by miRNAs bearing variations specific for Homo sapiens neanderthalensis was shown to be enhanced in prenatal brain development.Our results highlight the importance of changes in miRNA gene sequences in the course of Homo sapiens denisova and Homo sapiens neanderthalensis evolution. The genetic alterations of miRNAs regulating the spatiotemporal expression of multiple genes in the prenatal and postnatal brain may contribute to the progressive evolution of brain function, which is consistent with the observations of fine technical and typological properties of tools and decorative items reported from archaeological Denisovan sites. The data also suggest that differential spatial-temporal regulation of gene products promoted by the subspecies-specific mutations in the miRNA genes might have occurred in the brains of Homo sapiens denisova and Homo sapiens neanderthalensis, potentially contributing to the cultural differences between these two archaic hominines.
Project description:PurposeWe investigated the evidence of recent positive selection in the human phototransduction system at single nucleotide polymorphism (SNP) and gene level.MethodsSNP genotyping data from the International HapMap Project for European, Eastern Asian, and African populations was used to discover differences in haplotype length and allele frequency between these populations. Numeric selection metrics were computed for each SNP and aggregated into gene-level metrics to measure evidence of recent positive selection. The level of recent positive selection in phototransduction genes was evaluated and compared to a set of genes shown previously to be under recent selection, and a set of highly conserved genes as positive and negative controls, respectively.ResultsSix of 20 phototransduction genes evaluated had gene-level selection metrics above the 90th percentile: RGS9, GNB1, RHO, PDE6G, GNAT1, and SLC24A1. The selection signal across these genes was found to be of similar magnitude to the positive control genes and much greater than the negative control genes.ConclusionsThere is evidence for selective pressure in the genes involved in retinal phototransduction, and traces of this selective pressure can be demonstrated using SNP-level and gene-level metrics of allelic variation. We hypothesize that the selective pressure on these genes was related to their role in low light vision and retinal adaptation to ambient light changes. Uncovering the underlying genetics of evolutionary adaptations in phototransduction not only allows greater understanding of vision and visual diseases, but also the development of patient-specific diagnostic and intervention strategies.
Project description:Cortical thickness has been investigated since the beginning of the 20th century, but we do not know how similar the cortical thickness profiles among humans are. In this study, the local similarity of cortical thickness profiles was investigated using sliding window methods. Here, we show that approximately 5% of the cortical thickness profiles are similarly expressed among humans while 45% of the cortical thickness profiles show a high level of heterogeneity. Therefore, heterogeneity is the rule, not the exception. Cortical thickness profiles of somatosensory homunculi and the anterior insula are consistent among humans, while the cortical thickness profiles of the motor homunculus are more variable. Cortical thickness profiles of homunculi that code for muscle position and skin stimulation are highly similar among humans despite large differences in sex, education, and age. This finding suggests that the structure of these cortices remains well preserved over a lifetime. Our observations possibly relativize opinions on cortical plasticity.