Project description:Transcriptome analysis in cotton under drought stress. To study the molecular response of drought stress in cotton under field condition global gene expression analysis was carried out in leaf tissue. Gossypium hirsutum cv. Bikaneri Nerma was used for the gene expression analysis. Cotton plants were subjected to drought stress at peak flowering stage. Leaf samples were collected when the soil moisture content was 19.5% which is 50% of the normal control plots. Gene expression profiles in drought induced and their respective control samples were analyzed using Affymertix cotton Genechip Genome arrays to study the global changes in the expression of genome.
Project description:In order to study gene expression at the genomic level during elongation and secondary cell wall synthesis of upland cotton fiber, oligonucleotide microarrays were employed. RNA was isolated from fibers in 7 different time points beginning prior to peak fiber expansion, continuing through termination of fiber expansion and ending at peak cellulose synthesis (5, 8, 10, 14, 17, 21, and 24dpa). The arrays contained ~25,000 oligonucleotides representing ~12,200 genes designed from a fiber EST database during peak cell expansion. Dynamic changes in gene expression were analyzed in a developmental context to identify stage-specific biological processes and pathways likely to be crucial to cell polar elongation or cellulose biosynthesis and secondary cell wall biogenesis. Genes with significant changes in expression relative to any preceding time point were identified (moderated t-statistics, adjusted p-value <0.05) for each developmental time point with an expected false discovery rate for multiple testing <5%
Project description:Transcriptome analysis in cotton during fibre development stages. To study the molecular response of drought stress in cotton under field condition global gene expression analysis was carried out at fibre development stages (0, 5, 10 and 20 dpa/Days post anthesis). Gossypium hirsutum cv. Bikaneri Nerma was used for the gene expression analysis. Cotton plants were subjected to drought stress at peak flowering stage. Samples were collected when the soil moisture content was 19.5% which is 50% of the normal control plots. Gene expression profiles in drought induced and their respective control samples were analyzed using Affymertix cotton Genechip Genome arrays to study the global changes in the expression of genome.
Project description:Cotton fiber were used for the expression analysis at different developmental stages Affymetrix Cotton Genome array were used for the global profiling of gene expression of cotton fiber at different developmental stages
Project description:This study was initiated with the objective of identifying the anther/tapetum specific promoters from cotton floral buds. Cotton is an important commercial crop. Hybrid cotton varieties are developed to obtain improved yield and fiber quality. Most of the hybrid seed production in cotton is carried out by hand emasculation, which requires large amount of manpower, resulting in high cost of hybrid seed. We are developing barnase-barstar based male sterility system, which would be a better alternative for hybrid development. The tapetum specific promoters are main requirement for such a system. The study was thus carried out to identify genes expressed in the anthers.
Project description:Cotton (Gossypium hirsutum) is widely distributed worldwide, and improving the quality of its fiber is one of the most important tasks in cotton breeding. Cotton fibers are primarily composed of cellulose, which is synthesized and regulated by cellulose synthase (CesAs). However, the molecular mechanism of CesA genes in cotton is unclear. In this study, the cotton transcriptome and metabolome were used to investigate the significant function of CesA genes in fiber development. Finally, 321 metabolites were obtained, 84 of which were associated with the corresponding genes. Interestingly, a target gene named Gh_A08G144300, one of the CesA gene family members, was closely correlated with the development of cotton fibers. Then, identification and functional analysis were conducted. The target CesA gene Gh_A08G144300 was selected and analysed to determine its specific function in cotton fiber development. High-level gene expression of Gh_A08G144300 was found at different fiber development stages by RNA-seq analysis, and the silencing of Gh_A08G144300 visibly inhibited the growth of cotton fibers, showing that it is critical for their growth. This study provides an important reference for research on the gene function of Gh_A08G144300 and the regulatory mechanism of fiber development in cotton.
Project description:Abiotic stress is a major environmental factor that limits cotton growth and yield, moreover, this problem has become more and more serious recently and multiple stresses often occur simultaneously due to the global climate change and environmental pollution. We used microarrays to analyze the crosstalk of responsive genes to multiple abiotic stresses including ABA, cold, drought, salinity and alkalinity in cotton.