Project description:Pseudomonas aeruginosa PAO1 contacted with and without poplar roots gene expression Poplar contacted with and without PAO1 gene expression. All samples cultured in 1 x hrp + 0.25 % sucrose Keywords: Contact with different species
Project description:Pseudomonas aeruginosa PAO1 contacted with and without poplar roots gene expression Poplar contacted with and without PAO1 gene expression. All samples cultured in 1 x hrp + 0.25 % sucrose Experiment Overall Design: Strains: P. aeruginosa PAO1 WT Experiment Overall Design: Medium: 1 x hrp + 0.25 % sucrose Experiment Overall Design: Biofilm grown on poplar root compared to biofilm grown on glasswool Experiment Overall Design: Poplar roots grown
Project description:P. aeruginosa PAO1 PA2663-UW expression in biofilm cells relative to P. aeruginosa PAO1 WT-UW expression in biofilm cells. All samples cultured in LB with glass wool. Keywords: Mutation
Project description:Analysis of Pseudomonas aeruginosa PAO1 treated with 200 µM sphingomyelin. Results provide insight into the response to sphingomyelin in P. aeruginosa.
Project description:P. aeruginosa PAO1 wild type and PA2663 mutant strains expression in biofilm cells relative to P. aeruginosa PAO1 wild type strain expression in biofilm cells. All samples cultured in LB with glass wool Keywords: Biofilm
Project description:To identify the difference of gene expression in barley upon P. aeruginosa PAO1 and less pathogenic PA5021 mutant Keywords: Disease response
Project description:Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare transcriptome profiling of control of P. aeruginosa PAO1 (RNA-seq) to transcriptome profiling of farnesol-treated P. aeruginosa PAO1 and to evaluate protocols for optimal high-throughput data analysis. Methods:LB medium (50 mL) was inoculated with exponential growth phase P. aeruginosa PAO1 at a concentration of 108 CFU/mL. Farnesol was then added at a concentration of either 0 (control) or 0.56 mg/mL, in triplicate. All six experiment groups were incubated in a water bath shaker at 37 ºC with a shaking rate of 180 rpm for 5 h. Cells were then sampled and centrifuged from the three control groups and three farnesol treatment groups, respectively. The cell precipitates were separately snap-frozen at -80ºC. Total RNA was isolated from cells using Trizol (Life Technologies, USA) according to the manufacturer’s protocol. Results: Our RNA-seq results showed that less than 100 genes of P. aeruginosa PAO1 were differentially expressed following farnesol treatment. We found that about 1.7% of all detected genes (96 of 5554 genes) were more than two-fold differentially expressed following farnesol treatment. Conclusions:
Project description:The ParS/ParR two component regulatory system plays important roles for multidrug resistance in Pseudomonas aeruginosa. In this study we report RNA-seq analyses of the transcriptomes of P. aeruginosa PAO1 wild type and par mutants growing in a minimal medium containing 2% casamino acids. This has allowed the quantification of PAO1 transcriptome, and further defines the regulon that is dependent on the ParS/ParR system for expression. Our RNA-seq analysis produced the first estimates of absolute transcript abundance for the 5570 coding genes in P. aeruginosa PAO1. Comparative transcriptomics of P. aeruginosa PAO1 and par mutants identified a total of 464 genes regulated by ParS and ParR. Results also showed that mutations in the parS/parR system abolished the expression of the mexEF-oprN operon by down-regulating the regulatory gene mexS. In addition to affecting drug resistance genes, transcripts of quorum sensing genes (rhlIR and pqsABCDE-phnAB), were significantly up-regulated in both parS and parR mutants. Consistent with these results, a significant portion of the ParS/ParR regulated genes belonged to the MexEF-OprN and quorum sensing regulons. Deletion of par genes also lead to overproduction of phenazines and increased swarming motility, consistent with the up-regulation of quorum sensing genes. Our results established a link among ParS/ParR, MexEF-OprN and quorum sensing in Pseudomonas aeruginosa. Based on these results, we propose a model to illustrate the relationship among these regulatory systems in P. aeruginosa.
Project description:The Pseudomonas aeruginosa PAO1 gene phaF (PA5060) is a transcriptional regulator in the closely related pseudomonad P. putida. phaF is expressed at higher levels in P. aeruginosa clinical isolates from the cystic fibrosis respiratory tract. To determine the role of phaF in regulating P. aeruginosa gene expression, we cloned it under control of the pBAD promoter in expression vector pJN105 and compared expression in this strain relative to an empty vector control strain. We used microarrays to study overall gene expression in a P. aeruginosa PAO1 phaF overexpression strain.