Project description:A previously described low-fitness, high stress-resistant, variant of Listeria monocytogenes LO28 WT was subjected to an experimental evolution regime, selecting (in two parallel lines) for increased fitness in unstressed conditions. Evolved variants with increased fitness reverted to WT-like stress resistance. Whole genome sequencing and proteomics were used to identify differences between the ancestral and evolved strains.
Project description:Listeria monocytogenes is a human, food-borne pathogen. Genomic comparisons between L. monocytogenes and Listeria innocua, a closely related non-pathogenic species, were pivotal in the identification of protein coding genes essential for virulence. However, no comprehensive comparison has focused on the non-coding genome. We used strand-specific cDNA sequencing to produce genome-wide transcription start site (TSS) maps for both organisms, and developed a publicly available integrative browser to visualize and analyze both transcriptomes in different growth conditions and genetic backgrounds. Our data revealed conservation across most transcripts, but significant divergence between the species in a subset of non-coding RNAs. In L. monocytogenes we identified 113 sRNAs and 70 asRNAs, significantly increasing the repertoire of non coding RNAs in this species. Remarkably, we identified a class of long antisense transcripts (lasRNAs) that overlap one gene while also serving as the 5M-bM-^@M-^Y UTR of the adjacent divergent gene. Experimental evidence suggests that lasRNAs transcription inhibits expression of one operon while activating the expression of another. Such lasRNA/operon structure, termed "excludon", might represent a novel form of regulation in bacteria. Construction of consensus TSS-maps in Listeria monocytogenes and Listeria innocua by applying 5'-end sequencing on samples in different conditions and genetic backgrounds.
Project description:The foodborne pathogen Listeria monocytogenes has the ability to develop biofilm in food-processing environment, which becomes a major concern for the food safety. PrfA, a key transcriptional activator that regulates most of the known listerial virulence gene expression, has been shown to promote L. monocytogenes biofilm formation. In this study, the whole genome microarray was used to identify differentially expressed genes associated with the putative interaction between biofilm formation and PrfA in L. monocytogenes. Comparative transcriptome analyses indicated over 21.9% of the L. monocytogenes EGDe genes (627 out of 2857 predicted) were altered in their expression in biofilm cells relative to planktonic cell populations. These genes were classed into different functional categories which cover most of the biochemical functions encountered in bacterial cells, especially involved in ion transport, DNA repair, and cell wall biosynthesis based on significant enrichment of GO terms. Among them, 185 genes were identified to be associated with PrfA and biofilm formation by comparison of the whole gene expression profiles of L. monocytogenes EGDe and its M-NM-^TprfA mutant. The expression tendency of these PrfA-associated and biofilm-specific genes were mainly opposite in M-NM-^TprfA biofilm, and most of them are involved in phage-related function, membrane bioenergetics, and cell wall. Our results indicated that L. monocytogenes biofilm formation is probably controlled by the complex regulation network involved variable genes required for the different biological pathways. This regulatory network is modified in the prfA deletion mutant in order to maintain its stable biofilm lifestyle. Gene expression of planktonic cells and biofilm cells in Listeria monocytogenes EGDe and prfA isogenic deletion strain EGDeM-NM-^TprfA with cultivated in MEM and BHI for 48 hours, were mesasued using Agilent Listeria monocytogenes customized whole-genome microarray 8x15 array. Three replicates.
Project description:Investigation of whole genome gene expression level changes in Listeria monocytogenes EGD-e during incubation (0, 15 min, 30 min) in two types of soil extracts (TA, DA).
Project description:Peracetic acid (PAA), a strong oxidizing agent, has been widely used as a disinfectant in food processing settings as it does not produce harmful chlorinated by-products. In the present study, the transcriptional response of Listeria monocytogenes to 2.5 ppm of PAA was assessed using RNA-sequencing (RNA-seq). Our analysis revealed 12 differentially expressed genes, of which 9 were up-regulated (ohrR, ohrA, rpsN, lmo0637, lmo1973, fur, lmo2492, zurM, and lmo1007), and 3 were down-regulated (argG, lmo0604, lmo2156) in PAA treated samples compared to the control samples. A non-coding small RNA (rli32) was also found to be down-regulated. In detail, the organic peroxide toxicity protection (OhrA-OhrR) system, the metal homeostasis genes fur and zurM, the SbrE-regulated lmo0636-lmo0637 operon and a carbohydrate phosphotransferase system (PTS) operon component were induced under exposure of L. monocytogenes to PAA. Hence, this study identified key elements involved in the primary response of L. monocytogenes to oxidative stress caused by PAA. The investigation of the molecular mechanism of PAA response in L. monocytogenes is of utmost importance for the food industry, as this response can be induced in food-processing environments, as a result of inadequate rinsing during the disinfection process, that lead to PAA residues at low concentrations.