Project description:We deep sequenced and analyzed miRNAs using deep RNA sequencing (RNA-seq) in cage rearing and traditional breeding duck's duodenum sample of Nonghu NO.2 duck. 21 differentially expressed miRNA were identified in the duodenum. 6 miRNAs were upregulated and 15 were downregulated in the cage rearing duck's duodenum of the Nonghu NO.2 duck compared to their expression in the control group. These findings provided insights into the expression profiles of miRNAs in duck duodenum, and deepened our understanding of miRNAs in oxidative injury of duck.
Project description:Purpose:To understand the transcriptome regulator of duck spleen infected with duck enteritis virus (DEV).Methods:50-day-old ducks were inoculated with 100 titer (The TCID50 of DEV was 10-9/0.1mL) and 10-2 titer two different viral titer of DEV in leg muscle for different durations (66 h, 90 h and 114 h) and seronegative control (0 h) were analyzed using next-generation RNA sequencing.Furthermore, the data were validated using quantitative real-time PCR.Results:There were 534, 685 and 580 genes differentially expressed in 100 titer, moreover, 511, 485 and 531 differentially expressed genes (DEGs) were obtained from 10-2 titer for 66 h, 90 h and 114 h, respectively. These genes were mainly involved in functional categories including immune response, extracellular space, heparin binding, oxygen transport, extracellular region, cellular response to interleukin-4, MHC class II protein complex, antigen processing and presentation of peptide or polysaccharide antigen via MHC class II, and pathways such as ribosome, ECM-receptor interaction, cell adhesion molecules, JAk-STAT signaling pathway, PPAR signaling pathway, neuroactive ligand-receptor interaction, phagosome.Conclusions: Different titers of DEV infection can stimulate different biological processes and signaling pathways in the spleen, and regulated the complex biological processes, metabolic and signaling pathways in the process of DEV infection.This transcriptome analysis of duck spleen infected with DEV in different time points is reported for the first time, it laid the foundation for further understanding of interactions between DEV and duck spleen tissue, molecular mechanisms of duck defend against DEV infection, and screening key functional genes.
Project description:The objective of this study is to profile microRNA expressed in embryonic breast muscle of duck, analyze the conservation across multiple species and identify candidate microRNAs associated with duck muscle development. microRNA sequencing analysis was performed using female breast muscle samples at embryonic stage 13th day (E13) and embryonic stage 19th day (E19).
Project description:The quality and yield of duck feathers are very important economic traits that might be controlled by miRNA regulation. The aim of the present study was to investigate the mechanism underlying the crosstalk between individual miRNAs and the activity of signaling pathways that control the growth of duck feathers during different periods.