Project description:Some intracellular bacteria are known to cause long-term infections for periods of time that last decades without compromising the viability of the host. Although of critical importance, the changes that intracellular bacteria suffer during this long process of residence in a host cell environment remain obscure. Here, we report an experimental approach to study the adaptations of intracellular mycobacteria forced by a long-term intracellular lifestyle. Long-term infection of host macrophages with mycobacteria was maintained for a period of years. Mycobacteria in the long-term infected macrophages underwent an adaptation process leading to impaired phenolic glycolipids (PGL) synthesis, preference for glucose as a carbon source and neutral lipids accumulation. These changes correlated with increased survival of mycobacteria in macrophages and mice during re-infection and specific expression of stress- and survival-related genes. Our findings identify bacterial traits implicated in the establishment of long-term cellular infections and represent a tool for understanding the physiological states of bacteria living in fluctuating intracellular environments.
Project description:Purified NK cells were co-cultured with M. bovis BCG or M. tuberculosis H37Rv (1:1) in the presence of IL-2 (100U/ml) or IL-12 (10pg/ml) for 24h before trizol extraction. We used microarrays to detail the global gene expression underlying NK cell activation by mycobacteria. NK cell were isolated from the blood of 6 independent donors and activated with different mycobacteria and cytokines in order to study their transcriptional profiles according to mycobacterial virulence.
Project description:Inborn errors of human IFN-γ-dependent macrophagic immunity underlie mycobacterial diseases, whereas inborn errors of IFN-α/β-dependent intrinsic immunity underlie viral diseases. Both types of IFNs induce the transcription factor IRF1. We describe unrelated children with inherited complete IRF1 deficiency and early-onset, multiple, life-threatening diseases caused by weakly virulent mycobacteria and related intramacrophagic pathogens. These children have no history of severe viral disease, despite exposure to many viruses, including SARS-CoV-2, which is life-threatening in individuals with impaired IFN-α/β immunity. In leukocytes or fibroblasts stimulated in vitro, IRF1-dependent responses to IFN-γ are, both quantitatively and qualitatively, much stronger than those to IFN-α/β. Moreover, IRF1-deficient mononuclear phagocytes do not control mycobacteria and related pathogens normally when stimulated with IFN-γ. By contrast, IFN-α/β-dependent intrinsic immunity to nine viruses, including SARS-CoV-2, is almost normal in IRF1-deficient fibroblasts. Human IRF1 is essential for IFN-γ-dependent macrophagic immunity to mycobacteria, but largely redundant for IFN-α/β-dependent antiviral immunity.
Project description:Purified NK cells were co-cultured with M. bovis BCG or M. tuberculosis H37Rv (1:1) in the presence of IL-2 (100U/ml) or IL-12 (10pg/ml) for 24h before trizol extraction. We used microarrays to detail the global gene expression underlying NK cell activation by mycobacteria.