Project description:The debilitating disease kala-azar or visceral leishmaniasis (VL) is caused by the kinetoplastid protozoan parasite Leishmania donovani. The parasite is transmitted by the hematophagous sandfly vector of the genus Phlebotomus in the old world and Lutzomyia in the new world. The predominant Phlebotomine species associated with transmission of kala-azar are Phlebotomus papatasi and Phlebotomus argentipes. The infected female sandfly transmits the parasite when it takes a blood meal. Understanding the molecular interaction of the sand fly-Leishmania during the development of parasite within the gut of the sandfly is crucial to understanding parasite life cycle. The complete genome sequences of sandfly vectors (Phlebotomus and Lutzomyia) are currently not available and sequencing efforts are underway. Non-availability of genome sequence can hamper identification of proteins in the sandfly vector. In the present study we have carried out proteogenomic analysis of unsequenced sandfly vector P. paptasi cell line using high-resolution mass spectrometry and comparative homology-based searches using related dipteran protein data (mosquitoes and fruit fly). This study resulted in identification of 1,312 proteins from P. papatasi based on homology. Our study demonstrates the power of proteogenomic approaches in mapping the proteomes of unsequenced organisms.
2015-08-31 | PXD002115 | Pride
Project description:Host species determines the composition of the prokaryotic microbiome in Phlebotomus sand flies
Project description:A laboratory colony of Phlebotomus perniciosus sand flies was maintained. Sand flies were infected with cultured Leishmania infantum promastigotes in stationary phase. Ten infected sand flies were dissected after 5 days and promastigotes within the gut pooled. The cells were immediately washed in PBS once and lysed in TRIzol reagent (Life Technologies). RNA isolation was completed according to the manufacturer's instructions, obtaining 63ng. RNA-seq libraries were generated using the spliced leader sequence for second strand synthesis (Cuypers et al., 2017; Haydock et al., 2015), thus allowing for specific amplification of sequences from L. infantum promastigotes, thus avoiding contamination with material from the sand fly gut. Single-end sequencing was performed in an Illumina HiSeq2500 instrument and data analysis was conducted using bowtie2, samtools, featureCounts and Geneious. The main findings are: i) substantial differences in differential gene expression between sand fly-derived (sfPro) and cultured (acPro) promastigotes; and ii) over-expression of genes involved in metacyclogenesis in sfPro vs. acPro, including gp63 genes, autophagy genes, etc.
Project description:Resident microorganisms (microbiota) have far-reaching effects on the biology of their animal hosts, with major consequences for the host’s health and fitness. Some of these effects can be explained by microbial impacts on the expression of individual genes but a full understanding of microbiota-dependent gene regulation requires analysis of the overall architecture of the host transcriptome. In this study, we investigated the impact of the microbiota on the global structure of the transcriptome of Drosophila. Our transcriptomic analysis of 17 Drosophila lines representative of the global genetic diversity of this species yielded a total of 11 transcriptional modules of co-expressed genes. For 7 of these modules, the strength of the transcriptional network (defined as gene-gene coexpression) differed significantly between flies bearing a defined gut microbiota (gnotobiotic flies) and flies reared under microbiologically-sterile conditions (axenic flies). Furthermore, the network structure was uniformly stronger in these microbiota-dependent modules than in both the microbiota-independent modules in gnotobiotic flies and all modules in axenic flies, indicating that the presence of the microbiota tightens gene regulation in a subset of the transcriptome. The genes constituting the microbiota-dependent transcriptional modules include regulators of growth, metabolism and neurophysiology, previously implicated in mediating phenotypic effects of microbiota on Drosophila phenotype. Together these results provide the key first evidence that the microbiota strengthens the co-expression of genesin specific networks of functionally-related transcripts relative to the animal’s intrinsic baseline level of co-expression. Our system-wide analysis demonstrates that the presence of microbiota enhances the structure of the transcriptional network in the animal host. This finding has potentially major implications for understanding of the mechanisms by which microbiota affect host health and fitness, and the ways in which hosts and their resident microbiota coevolve.
Project description:This SuperSeries is composed of the SubSeries listed below. Acquisition of the intestinal microbiota begins at birth, and a stable microbial community develops from a succession of key organisms. Disruption of the microbiota during maturation by low-dose antibiotic exposure can alter host metabolism and adiposity. We now show that low-dose penicillin (LDP), delivered from birth, induces metabolic alterations and affects ileal expression of genes involved in immunity. LDP that is limited to early life transiently perturbs the microbiota, which is sufficient to induce sustained effects on body composition, indicating that microbiota interactions in infancy may be critical determinants of long-term host metabolic effects. In addition, LDP enhances the effect of high-fat diet induced obesity. The growth promotion phenotype is transferrable to germ-free hosts by LDP-selected microbiota, showing that the altered microbiota, not antibiotics per se, play a causal role. These studies characterize important variables in early-life microbe-host metabolic interaction and identify several taxa consistently linked with metabolic alterations. Refer to individual Series
Project description:Acquisition of the intestinal microbiota begins at birth, and a stable microbial community develops from a succession of key organisms. Disruption of the microbiota during maturation by low-dose antibiotic exposure can alter host metabolism and adiposity. We now show that low-dose penicillin (LDP), delivered from birth, induces metabolic alterations and affects ileal expression of genes involved in immunity. LDP that is limited to early life transiently perturbs the microbiota, which is sufficient to induce sustained effects on body composition, indicating that microbiota interactions in infancy may be critical determinants of long-term host metabolic effects. In addition, LDP enhances the effect of high-fat diet induced obesity. The growth promotion phenotype is transferrable to germ-free hosts by LDP-selected microbiota, showing that the altered microbiota, not antibiotics per se, play a causal role. These studies characterize important variables in early-life microbe-host metabolic interaction and identify several taxa consistently linked with metabolic alterations. Male mice were exposed to low-dose penicillin (6.7 mg/L), from birth. Ileums were collected at 8 weeks of age, RNA was extracted, and transcriptional differences were measured by microarray analysis.
Project description:Host pathways mediating changes in immune states elicited by intestinal microbial colonization are incompletely characterized. Here we describe alterations of the host immune state induced by colonization of germ-free zebrafish larvae with an intestinal microbial community or single bacterial species. We show that microbiota-induced changes in intestinal leukocyte subsets and whole-body host gene expression are dependent on the innate immune adaptor gene myd88. Similar patterns of gene expression are elicited by colonization with conventional microbiome, as well as mono-colonization with two different zebrafish commensal bacterial strains. By studying loss-of-function myd88 mutants, we find that colonization suppresses Myd88 at the mRNA level. Tlr2 is essential for microbiota-induced effects on myd88 transcription and intestinal immune cell composition.
Project description:Acquisition of the intestinal microbiota begins at birth, and a stable microbial community develops from a succession of key organisms. Disruption of the microbiota during maturation by low-dose antibiotic exposure can alter host metabolism and adiposity. We now show that low-dose penicillin (LDP), delivered from birth, induces metabolic alterations and affects ileal expression of genes involved in immunity. LDP that is limited to early life transiently perturbs the microbiota, which is sufficient to induce sustained effects on body composition, indicating that microbiota interactions in infancy may be critical determinants of long-term host metabolic effects. In addition, LDP enhances the effect of high-fat diet induced obesity. The growth promotion phenotype is transferrable to germ-free hosts by LDP-selected microbiota, showing that the altered microbiota, not antibiotics per se, play a causal role. These studies characterize important variables in early-life microbe-host metabolic interaction and identify several taxa consistently linked with metabolic alterations. Male and female mice were exposed to low-dose penicillin from birth. In a second experiment, microbiota from female control and LDP mice was transferred to 3-week old female germ-free mice. Livers were collected at 8 weeks of age, RNA was extracted, and transcriptional differences were measured by RNAseq.
Project description:Background and aims. The etiopathology of inflammatory bowel diseases is still poorly understood. To date, only few little data are available on the microbiota composition in ulcerative colitis (UC), representing a major subform of inflammatory bowel diseases. Currently, one of the main challenges is to unravel the interactions between genetics and environmental factors in the onset or during the progression and maintenance of the disease. The aim of the present study was to analyse twin pairs discordant for UC for both gut microbiota dysbiosis and host expression profiles at a mucosal level and to get insight into the functional genomic crosstalk between microbiota and mucosal epithelium in vivo. Methods. Biopsies were sampled from the sigmoid colon of both healthy and diseased siblings from UC discordant twin pairs but also from healthy twins. Microbiota profiles were assessed by 16S rDNA libraries while mRNA expression profiles were analysed from the same volunteers using Affymetrix microarrays. Results. UC patients showed a dysbiotic microbiota with lower diversity and more species belonging to Actinobacteria and Proteobacteria phyla. On the contrary, their healthy siblingsM-bM-^@M-^Y microbiota contained more bacteria from the Lachnospiracea and Ruminococcaceae family than did healthy individuals . Sixty-three host transcripts significantly correlated with bacterial genera in healthy individuals whereas only 43 and 32 correlated with bacteria in healthy and UC siblings from discordant pairs, respectively. Several transcripts related to oxidative and immune responses were differentially expressed between unaffected and UC siblings. Conclusion. A loss of crosstalk between gut microbiota and host was highlighted in UC patients. This defect was also striking in healthy siblings from discordant pairs, as was the lower biodiversity within the microbiota. Our results suggest disease-relevant interactions between host transcriptome and microbiota. Moreover, unusual aerobic bacteria were noticed in UC mucosal microbiota, whereas healthy siblings from discordant pairs had higher percentages of potentially beneficialusual commensal bacterial species. Paired samples (twins) were analyzed to obtain data independent of genetic variation
Project description:Acquisition of the intestinal microbiota begins at birth, and a stable microbial community develops from a succession of key organisms. Disruption of the microbiota during maturation by low-dose antibiotic exposure can alter host metabolism and adiposity. We now show that low-dose penicillin (LDP), delivered from birth, induces metabolic alterations and affects ileal expression of genes involved in immunity. LDP that is limited to early life transiently perturbs the microbiota, which is sufficient to induce sustained effects on body composition, indicating that microbiota interactions in infancy may be critical determinants of long-term host metabolic effects. In addition, LDP enhances the effect of high-fat diet induced obesity. The growth promotion phenotype is transferrable to germ-free hosts by LDP-selected microbiota, showing that the altered microbiota, not antibiotics per se, play a causal role. These studies characterize important variables in early-life microbe-host metabolic interaction and identify several taxa consistently linked with metabolic alterations. C57BL6J mice received low-dose penicillin through their drinking water (6.7 mg/L), control mice did not receive antibiotics. All mice were started on normal chow (13.5% fat kcal). At 17 weeks of age, half of the mice were switched to high fat diet (45% fat kcal). Livers were collected at age 30 weeks, RNA was extracted, and transcriptional differences were measured by microarray analysis.