Project description:To elucidate whether Faecalibacterium prausnitzii has effects on intestinal toxicity induced by immune checkpoint inhibitors, we performed RNA-seq analysis of colon tissues of mice receiving DSS, DSS+ICB and DSS+ICB+F. prausnitzii gavage to compare the gene expression profiles.
Project description:Gut microbiota impacts responses to immune checkpoint inhibitors (ICI). High level of Faecalibacterium prausnitzii has been associated with a positive response to ICI in multiple cancer types. Here, we show in two independent cohorts of patients with non-small cell lung cancer and advanced melanoma that high level of F. prausnitzii at baseline is positively associated with a better clinical response to ICI. In a mouse preclinical model, we show that the F. prausnitzii strain EXL01, already in clinical development for Inflammatory Bowel Disease, restores the anti-tumor response to ICI in the context of antibiotic-induced microbiota perturbation at clinical and tumor transcriptomics level. In vitro, EXL01 strain enhances T cell activation in the presence of ICI. Interestingly, oral administration of EXL01 strain is not associated with a change in fecal microbiota diversity or composition suggesting a direct effect on immune cells in the small intestine.
Project description:Cancer treatment has been revolutionized by immune checkpoint inhibitors, which regulate immune cell function by blocking the interactions between immune checkpoint molecules and their ligands. The interaction between programmed cell death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) is a target for immune checkpoint inhibitors. Nanobodies, which are recombinant variable domains of heavy-chain-only antibodies, can replace existing immune checkpoint inhibitors, such as anti-PD-1 or anti-PD-L1 conventional antibodies. However, the screening process for high-affinity nanobodies is laborious and time-consuming. Here, we identified high-affinity anti-PD-1 nanobodies using peptide barcoding, which enabled reliable and efficient screening by distinguishing each nanobody with a peptide barcode that was genetically appended to each nanobody. We prepared a peptide-barcoded nanobody (PBNb) library with thousands of variants. Three high-affinity PBNbs were identified from the PBNb library by quantifying the peptide barcodes derived from high-affinity PBNbs. Furthermore, these three PBNbs neutralized the interaction between PD-1 and PD-L1. Our results demonstrate the utility of peptide barcoding and the resulting nanobodies can be used as experimental tools and antitumor agents. Peptide barcoding can be used to screen for molecules other than nanobodies. Our methods, such as the design of peptide barcodes, the design of peptide-barcoded molecules, preparation of peptide-barcoded molecule library, and quantification of peptide barcodes, are helpful in screening for peptide-barcoded molecules.
Project description:A microbiome-produced metabolite drives immunostimulatory macrophages and boosts response to immune checkpoint inhibitors in pancreatic cancer
Project description:The human intestinal microbiota plays an essential role in host health. Modifications in its composition and diversity could induce pathologies such as inflammatory bowel diseases (IBD). These diseases are characterized by an unbalanced intestinal microbiota (a process known as dysbiosis) and an altered immune response. Faecalibacterium prausnitzii, the most abundant commensal bacterium in the human intestinal microbiota of healthy individuals (representing more than 5% of the total bacterial population), has been reported to be lower in feces and mucosa-associated microbiota of IBD patients. In addition, we have shown that both F. prausnitzii and its culture supernatant (SN) have anti-inflammatory and protective effects in both acute and chronic colitis models. However, the host molecular mechanisms involved in these anti-inflammatory effects remain unknown. In order to address this issue, we performed DNA chip-based transcriptomic analyses in HT-29 human intestinal epithelial cells stimulated with TNF-a and exposed to F. prausnitzii SN or to BHI (growth medium for F prausnitzii).