Project description:A cDNA library from 0-10 day post anthesis cotton ovules was established to study genes expressed in cotton ovule during initiation and quickly elongation period. We randomly sequenced over 100,000 ESTs from this library and acquired a gene pool of more than 28,000 UniESTs. The cotton UniESTs were then PCR-amplified and printed onto microarray. This array is comprised of about 28000 high-quality cotton cDNAs (with average length>750bp) and external controls. To study the different growth potential of cotton fibers in a one-year cycle, we then hybridized the array with RNA samples derived from +7 DPA wild-type upland cotton fibers in four different seasons, respectively.
Project description:Transcriptome analysis in cotton during fibre development stages. To study the molecular response of drought stress in cotton under field condition global gene expression analysis was carried out at fibre development stages (0, 5, 10 and 20 dpa/Days post anthesis). Gossypium hirsutum cv. Bikaneri Nerma was used for the gene expression analysis. Cotton plants were subjected to drought stress at peak flowering stage. Samples were collected when the soil moisture content was 19.5% which is 50% of the normal control plots. Gene expression profiles in drought induced and their respective control samples were analyzed using Affymertix cotton Genechip Genome arrays to study the global changes in the expression of genome. Total RNA was isolated from 0 dpa, 5 dpa, fibre bearing ovules of 10 dpa, and fibre bearing ovules of 20 dpa. Samples were collected from both drought induced and control plants. Biotin labeled cRNA was hybridized on Affymertix cotton Genechip Genome array following the Affymetrix protocols. Three biological replicates were maintained.
Project description:We explored the transcriptomic alterations associated with domestication by interrogating a developmental time course of cotton fibers from the wild G. hirsutum var. yucatanense and a representative of an elite domesticated line.
Project description:Cotton (Gossypium hirsutum) is widely distributed worldwide, and improving the quality of its fiber is one of the most important tasks in cotton breeding. Cotton fibers are primarily composed of cellulose, which is synthesized and regulated by cellulose synthase (CesAs). However, the molecular mechanism of CesA genes in cotton is unclear. In this study, the cotton transcriptome and metabolome were used to investigate the significant function of CesA genes in fiber development. Finally, 321 metabolites were obtained, 84 of which were associated with the corresponding genes. Interestingly, a target gene named Gh_A08G144300, one of the CesA gene family members, was closely correlated with the development of cotton fibers. Then, identification and functional analysis were conducted. The target CesA gene Gh_A08G144300 was selected and analysed to determine its specific function in cotton fiber development. High-level gene expression of Gh_A08G144300 was found at different fiber development stages by RNA-seq analysis, and the silencing of Gh_A08G144300 visibly inhibited the growth of cotton fibers, showing that it is critical for their growth. This study provides an important reference for research on the gene function of Gh_A08G144300 and the regulatory mechanism of fiber development in cotton.
Project description:Upland cotton (Gossypium hirsutum L.) is one of the world’s most important fiber crops, accounting for more than 90% of all cotton production. While their wild progenitors have relatively short and coarse, often tan-colored fibers, modern cotton cultivars possess longer, finer, stronger, and whiter fiber. In this study, the wild and cultivated cottons (YU-3 and TM-1) selected show significant differences on fibers at 10 day post-anthesis (DPA), 20 DPA and mature stages at the physiological level. In order to explore the effects of domestication, reveal molecular mechanisms underlying these phenotypic differences and better inform our efforts to further enhance cotton fiber quality, an iTRAQ-facilitated proteomic methods were performed on developing fibers. There were 6990 proteins identified, among them 336 were defined as differentially expressed proteins (DEPs) between fibers of wild versus domesticated cotton. The down- or up-regulated proteins in wild cotton were involved in Phenylpropanoid biosynthesis, Zeatin biosynthesis, Fatty acid elongation and other processes. Association analysis between transcroptome and proteome showed positive correlations between transcripts and proteins at both 10 DPA and 20 DPA. The difference of proteomics had been verified at the mRNA level by qPCR, also at physiological and biochemical level by POD activity determination and ZA content estimation. This work corroborate the major pathways involved in cotton fiber development and demonstrate that POD activity and zeatin content have a great potential related to fiber elongation and thickening.
Project description:We explored the transcriptomic alterations associated with domestication by interrogating a developmental time course of cotton fibers from the wild G. hirsutum var. yucatanense and a representative of an elite domesticated line. 30 chip design - including 2 species (wild and domesticated cotton), by 1 tissue (fiber), for 5 timepoints (2,7,10,20, and 25 days after anthesis), with 3 replicates per timepoint
Project description:affy_cotton_2011_12 - affy_cotton_2011_12 - In this study we characterized the fiber transcriptomes of the two species, Gossypium hirsutum and Gossypium barbadense that were parental genotypes of a RIL mapping population used previously for phenotypic QTL and expression QTL mapping., We used 454 deep pyrosequencing to characterize cDNAs from developing fibers at two key developmental time-points; 10 and 22 days post anthesis. A unigene set was assembled and annotated, and differential digital gene expression was assessed from the different time-point and genotype representations of the reads within assembled contigs. As a complementary approach, we conducted microarray-based hybridization profiling using the cotton Affymetrix gene chip and labeled cDNAs from fibers at 11 dpa and for the same two genotypes and compared differentially expressed genes identified by the two platforms. The 454 unigenes were also mined for the presence of microsatellite repeats and SNPs that will be useful markers for mapping and marker-assisted selection in cotton improvement.-Total RNA was extracted from 11 dpa-old fibers from the two genotypes, Guazuncho 2 (Gossypium hirsutum) and VH8-4602 (G. barbadense), and included two replicates of each. RNA was checked for quality and quantity using an Agilent Bioanalyser 2100 (Agilent Technologies, Santa Clara, CA, USA, http://www.home.agilent.com) following the manufacturer’s recommendations. The RNA was sent to the Australian Genome Research Facility Ltd. (http://www.agrf.org.au, Melbourne, Victoria, Australia) for labeling and hybridization to the Affymetrix Genechip® Cotton Genome Array (21,854 genes) (Affymetrix, http://www.affymetrix.com/). - 4 arrays - Cotton; x comparison between two genotypes in cell type This represents the gene expression component of the study only
Project description:affy_cotton_2011_12 - affy_cotton_2011_12 - In this study we characterized the fiber transcriptomes of the two species, Gossypium hirsutum and Gossypium barbadense that were parental genotypes of a RIL mapping population used previously for phenotypic QTL and expression QTL mapping., We used 454 deep pyrosequencing to characterize cDNAs from developing fibers at two key developmental time-points; 10 and 22 days post anthesis. A unigene set was assembled and annotated, and differential digital gene expression was assessed from the different time-point and genotype representations of the reads within assembled contigs. As a complementary approach, we conducted microarray-based hybridization profiling using the cotton Affymetrix gene chip and labeled cDNAs from fibers at 11 dpa and for the same two genotypes and compared differentially expressed genes identified by the two platforms. The 454 unigenes were also mined for the presence of microsatellite repeats and SNPs that will be useful markers for mapping and marker-assisted selection in cotton improvement.-Total RNA was extracted from 11 dpa-old fibers from the two genotypes, Guazuncho 2 (Gossypium hirsutum) and VH8-4602 (G. barbadense), and included two replicates of each. RNA was checked for quality and quantity using an Agilent Bioanalyser 2100 (Agilent Technologies, Santa Clara, CA, USA, http://www.home.agilent.com) following the manufacturer’s recommendations. The RNA was sent to the Australian Genome Research Facility Ltd. (http://www.agrf.org.au, Melbourne, Victoria, Australia) for labeling and hybridization to the Affymetrix Genechip® Cotton Genome Array (21,854 genes) (Affymetrix, http://www.affymetrix.com/). - 4 arrays - Cotton; x comparison between two genotypes in cell type
Project description:affy_cotton_2011_12 - affy_cotton_2011_12 - In this study we characterized the fiber transcriptomes of the two species, Gossypium hirsutum and Gossypium barbadense that were parental genotypes of a RIL mapping population used previously for phenotypic QTL and expression QTL mapping., We used 454 deep pyrosequencing to characterize cDNAs from developing fibers at two key developmental time-points; 10 and 22 days post anthesis. A unigene set was assembled and annotated, and differential digital gene expression was assessed from the different time-point and genotype representations of the reads within assembled contigs. As a complementary approach, we conducted microarray-based hybridization profiling using the cotton Affymetrix gene chip and labeled cDNAs from fibers at 11 dpa and for the same two genotypes and compared differentially expressed genes identified by the two platforms. The 454 unigenes were also mined for the presence of microsatellite repeats and SNPs that will be useful markers for mapping and marker-assisted selection in cotton improvement.-Total RNA was extracted from 11 dpa-old fibers from the two genotypes, Guazuncho 2 (Gossypium hirsutum) and VH8-4602 (G. barbadense), and included two replicates of each. RNA was checked for quality and quantity using an Agilent Bioanalyser 2100 (Agilent Technologies, Santa Clara, CA, USA, http://www.home.agilent.com) following the manufacturer’s recommendations. The RNA was sent to the Australian Genome Research Facility Ltd. (http://www.agrf.org.au, Melbourne, Victoria, Australia) for labeling and hybridization to the Affymetrix Genechip® Cotton Genome Array (21,854 genes) (Affymetrix, http://www.affymetrix.com/). -