Project description:Biological soil crusts (BSCs) are cyanobacteria-dominated microbial communities that cover extensive portions of the world’s arid and semi-arid deserts. The infrequent periods of hydration are often too short to allow for dormancy strategies based on sporulation; consequently, survival is based on the unique capabilities of vegetative cells to resuscitate from and re-enter a stress resistant dormant state, one of which is migration within the crust layers in response to hydration. In this study, we sought to characterize the events that govern the emergence of the dominant cyanobacterium from dormancy, its subsequent growth, and the events triggered by re-desiccation and a transition back to dormant state. We performed a 48 hour laboratory wetting experiment of a desert BSC and tracked the response of Microcoleus vaginatus using a whole genome transcriptional time-course including night/day periods. This allowed the identification of genes with a diel expression pattern, genes involved uniquely in the signaling after hydration and those that contribute primarily to desiccation preparation.
Project description:Biological soil crusts (BSCs) are cyanobacteria-dominated microbial communities that cover extensive portions of the world’s arid and semi-arid deserts. The infrequent periods of hydration are often too short to allow for dormancy strategies based on sporulation; consequently, survival is based on the unique capabilities of vegetative cells to resuscitate from and re-enter a stress resistant dormant state, one of which is migration within the crust layers in response to hydration. In this study, we sought to characterize the events that govern the emergence of the dominant cyanobacterium from dormancy, its subsequent growth, and the events triggered by re-desiccation and a transition back to dormant state. We performed a 48 hour laboratory wetting experiment of a desert BSC and tracked the response of Microcoleus vaginatus using a whole genome transcriptional time-course including night/day periods. This allowed the identification of genes with a diel expression pattern, genes involved uniquely in the signaling after hydration and those that contribute primarily to desiccation preparation. Desert BSC samples collected from Moab, UT, were hydrated over a period of 48 hours followed by drying induced by removal of water. At periodic times soil samples were harvested and used for RNA extraction and whole genome expression analysis using an expression array representing genes from two strains of M. vaginatus (PCC 9802 and FGP-2)
Project description:Pearl millet [Pennisetum glaucum (L.) R.Br] is the fifth most important cereal crop next to rice, wheat, maize, and sorghum. It is cultivated especially by small holder farmers in arid and semi-arid regions because of its drought resistance. However, the molecular mechanisms during drought stress in Pennisetum remain elusive. In the present study we have used a shotgun proteomics approach (GEL-LC-Orbitrap-MS) for identification and quantification of proteins from different tissues (root, seed and leaf) under drought and control conditions. Plants were grown in a tube system to survey root growth under drought stress. The water content was measured in the upper and the lower part of the tube using soil moisture sensors. Under drought stress root elongation was observed. Measurement of stomatal conductance showed a clear response to drought stress. For proteomics measurements root, leaf and seed tissues were harvested. In total 2281 proteins were identified, 1095 in root, 1299 in seed, and 1208 in leaf in both stress and control conditions.
Project description:The drought stress is one of key adverse environmental factors limiting plant growth and development, even threating global crop productivity in many arid and semi-arid regions. Drought stress usually causes huge economic losses for tobacco industries. Understanding how plants respond and adapt to the drought stress helps generate engineered plants with enhanced drought resistance. In this study, integrative analyses of multiple time point-related transcriptome and metabolome generated from K326 and its derived mutant 28 (M28) with contrasting drought tolerance. We found that dramatic changes of gene expression profiles between M28 and K326 before and after drought treatment.
2022-09-26 | GSE214048 | GEO
Project description:Sequencing of agricultural soils in semi-arid areas