Project description:Analysis of gene expression in the lungs of pigs from high and low litter birth weight groups (HBW and LBW) inoculated with swine influenza virus. The aim of the experiment is to determine whether litter birth weight has an effect on the innate immune response to infection in pigs, and whether differences in gene expression can be linked to epigenetic differences between the two birth weight groups.
Project description:Analysis of gene expression in the lungs of pigs from high and low litter birth weight groups (HBW and LBW) inoculated with swine influenza virus. The aim of the experiment is to determine whether litter birth weight has an effect on the innate immune response to infection in pigs, and whether differences in gene expression can be linked to epigenetic differences between the two birth weight groups. A two condition experiment: lung tissue RNA from HBW and LBW SIV-infected pigs. 16 biological replicates for each condition, each hybridized with a reference to separate arrays. 32 arrays in total.
Project description:An early settlement of a complex gut microbiota can protect against gastro-intestinal dysbiosis, but the effects of neonatal microbiota colonization on the maturation of the porcine gastric mucosa are largely unknown. The transcriptome of the oxyntic mucosa of 12 caesarian-derived pigs previously associated with microbiota of different complexity was studied. Pigs received sow blood serum at birth (d0), 2 mL of starter microbiota (10^7 CFU of each Lactob. Amylovorus (LAM), Clostr. glycolicum, and Parabacteroides spp.) on d1-d3 of age and either a placebo inoculant (simple association, SA) or an inoculant consisting of diluted feces of an adult sow (complex association, CA) on d3-d4 of age. Then pigs were fed a moist diet . Gastric samples were obtained at on euthanised pigs at 2 weeks of age.
Project description:Chorioamnionitis (CA), resulting from intra-amniotic inflammation, is a frequent cause of preterm birth and exposes the immature intestine to bacterial toxins and/or inflammatory mediators before birth via fetal swallowing. This may affect intestinal immune development, interacting with the effects of enteral feeding and gut microbiota colonization just after birth. Using preterm pigs as model for preterm infants, we hypothesized that prenatal exposure to gram-negative endotoxin influences postnatal bacterial colonization and gut immune development. Pig fetuses were given intra-amniotic lipopolysaccharide (LPS) 3 d before preterm delivery by cesarean section, and were compared with litter-mate controls (CON) at birth and after 5 d of formula feeding and spontaneous bacterial colonization. Amniotic fluid was collected for analysis of leukocyte counts and cytokines, and the distal small intestine was analyzed for endotoxin level, morphology and immune cell counts. Intestinal gene expression and microbiota were analyzed by transcriptomics and metagenomics, respectively. At birth, LPS-exposed pigs showed higher intestinal endotoxin, neutrophil/macrophage density and shorter villi. About 1.0% of intestinal genes were affected at birth and DMBT1, a regulator of mucosal immune defense, was identified as the hub gene in the co-expression network. Genes related to innate immune response (TLR2, LBP, CD14, C3, SFTPD), neutrophil chemotaxis (C5AR1, CSF3R, CCL5) and antigen processing (MHC II, CD4) were also affected and expression levels correlated with intestinal neutrophil/macrophage density and amniotic fluid cytokine levels. On day 5, LPS and CON pigs showed similar necrotizing enterocolitis (NEC) lesions, endotoxin levels, morphology, immune cell counts, gene expressions and microbiota (except for difference in some low-abundant species). Our results show that CA markedly affects intestinal genes at preterm birth, including genes related to immune cell infiltration. However, a few days later, following the physiological adaptations to preterm birth, CA had limited effects on intestinal structure, function, gene expression, bacterial colonization and NEC sensitivity. We conclude that short-term, prenatal intra-amniotic inflammation is unlikely to exert marked effects on intestinal immune development in preterm neonates beyond the immediate neonatal period.
Project description:Improper use of antibiotics in swine could reduce commensal bacteria and possibly increase pathogen infections via the gut resistome. This study aimed to compare the metaproteomic profiles of gut resistome and related metabolism in the cecal microbiota of fattening pigs raised under antibiotic-free (ABF) conditions with those of ordinary industrial pigs (CTRL).
Project description:The gut microbiota is closely associated with digestion, metabolism, immunity, and host health. The imbalance of the microbial community in livestock directly affects their well-being and, consequently, productivity. The composition and diversity of the gut microbiota are influenced not only by host genetics but also by environmental factors such as the microbial complexity of the rearing environment, feeds, and antibiotics. Here, we focus on the comparison of gut microbial communities in miniature pigs developed for xenotransplantation in specific pathogen-free (SPF) and conventional (non-SPF) facilities. To identify the disparities in gut microbial composition and functionality between these two environments, 16S RNA metagenome sequencing was conducted using fecal samples. The results revealed that the non-SPF pigs had higher gut microbiota diversity than the SPF pigs. The genera Streptococcus and Ruminococcus were more abundant in SPF pigs than in non-SPF pigs. Blautia, Bacteroides, and Roseburia were exclusively observed in SPF pigs, whereas Prevotella was exclusively found in non-SPF pigs. Carbohydrate and nucleotide metabolism, as well as environmental information processing, were predicted to be enriched in SPF pigs. In addition, energy and lipid metabolism, along with processes related to genetic information, cellular communication, and diseases, were predicted to be enriched in non-SPF pigs. This study makes an important contribution to elucidating the impact of environments harboring a variety of microorganisms, including pathogens, on the gut microbiota of miniature pigs. Furthermore, we sought to provide foundational data on the characteristics of the gut microbiota in genetically modified pigs, which serve as source animals for xenotransplantation.
Project description:An early settlement of a complex gut microbiota can protect against gastro-intestinal dysbiosis, but the effects of neonatal microbiota colonization on the gut barrier upon the further encounter of favorable bacteria or not, are largely unknown. The jejunal transcriptome of differently perfused intestinal loops of 12 caesarian-derived pigs previously associated with microbiota of different complexity was studied. Pigs received pasteurized sow colostrum at birth (d0), 2 mL of starter microbiota (10^7 CFU of each Lactob. Amylovorus (LAM), Clostr. glycolicum, and Parabacteroides spp.) on d1-d3 of age and either a placebo inoculant (simple association, SA) or an inoculant consisting of diluted feces of an adult sow (complex association, CA) on d3-d4 of age. On days 26-37 of age, jejunal loops were perfused for 8 h with either enterotoxigenic E. coli F4 (ETEC), F4 fimbriae (F4), LAM or saline (CTRL) and jejunal samples were obtained from each piglet immediately afterwards.