Project description:We developed a quantitative method called GLORI to investigate m6A methylation in the mammalian transcriptome at single-base resolution.
Project description:To investigate the m6A methylation in the mammalian transcriptome, we developed a quantitative method, names GLORI, that could detect m6A stoichiometry at single-base resolution. We then performed GLORI on cells with different treatment, such as stress, knockdown and inhibitor. We next analysis m6A methyloms of different celllines and cells under different treatment to investigate the fuctional role of m6A.
Project description:MicroRNAs (miRNAs) have been shown to play an important role in many different cellular, developmental, and physiological processes. Accordingly, numerous methods have been established to identify and quantify miRNAs. The shortness of miRNA sequence results in a high dynamic range of melting temperatures and, moreover, impedes a proper selection of detection probes or optimized PCR primers. While miRNA microarrays allow for massive parallel and accurate relative measurement of all known miRNAs, they have so far been less useful as an assay for absolute quantification. Here, we present a microarray based approach for global and absolute quantification of miRNAs. The method relies on an equimolar pool of about 1000 synthetic miRNAs of known concentration which is used as an universal reference and labeled and hybridized in a dual colour approach on the same array as the sample of interest. Each single miRNA is quantified with respect to the universal reference outbalancing bias related to sequence, labeling, hybridization or signal detection method. We demonstrate the accuracy of the method by various spike in experiments. Further, we quantified miRNA copy numbers in liver samples and CD34(+)CD133(-) hematopoietic stem cells.
Project description:Here we report a metabolic labeling method to map mRNA N6-methyladenosine (m6A) modification transcriptome-wide at base resolution, termed m6A-label-seq. The cells were fed with Se-allyl-L-selenohomocysteine, an analog of methoine, which serves as the precursor of methylation enzyme cofactor, so that cellular RNAs were continuously deposited with N6-allyladenosine (a6A) at supposed m6A sites. We enriched a6A-containing mRNAs and sequenced their a6A sites which are identical to m6A sites, based on iodination-induced misincorporation during reverse transcription.