Project description:Compromise of the intestinal barrier have been associated with a series of inflammatory conditions where the routine controls nutrient absorption and pathogens exclusion is lost to different degrees. The intestinal epithelial cells form a barrier of selective permeability which protects from invasion by the normal bacteria present in the gut. When the barrier is compromised, bacteria and their products can attack the cells and cause inflammation, which can (in severe cases) cause sepsis. Mesenteric lymph nodes play a crucial role in the immune response and are of particular importance in the study of Inflammatory Bowel Disease (IBD) patients due to their involvement in the disease process. To assess the efficiency of gut immune barrier, we collected the pre-nodal lymph from Inflammatory Bowel Disease (IBD) subjects and performed a comprehensive proteomic analysis. The current study is complementary extension of the proteomics signature found in DSS-induced colitis mouse model, providing an insight in the lymph composition, and associated biochemical changes, in the set of samples (n=6) recruited from the Inflammatory Bowel Disease (IBD), subjects undergoing intestinal resection. Following bottom-up analysis, the enrichment analysis – GO and Ingenuity pathway analysis (IPA) analysis identified several pathways pointing towards a damaging phenotype.
Project description:The gut microbiome is significantly altered in inflammatory bowel diseases, but the basis of these changes is not well understood. We have combined metagenomic and metatranscriptomic profiling of the gut microbiome to assess changes to both bacterial community structure and transcriptional activity in a mouse model of colitis. Gene families involved in microbial resistance to oxidative stress, including Dps/ferritin, Fe-dependent peroxidase and glutathione S-transferase, were transcriptionally up-regulated in colitis, implicating a role for increased oxygen tension in gut microbiota modulation. Transcriptional profiling of the host gut tissue and host RNA in the gut lumen revealed a marked increase in the transcription of genes with an activated macrophage and granulocyte signature, suggesting the involvement of these cell types in influencing microbial gene expression. Down-regulation of host glycosylation genes further supports a role for inflammation-driven changes to the gut niche that may impact the microbiome. We propose that members of the bacterial community react to inflammation-associated increased oxygen tension by inducing genes involved in oxidative stress resistance. Furthermore, correlated transcriptional responses between host glycosylation and bacterial glycan utilisation support a role for altered usage of host-derived carbohydrates in colitis. Complementary transcription profiling data from the mouse hosts have also been deposited at ArrayExpress under accession number E-MTAB-3590 ( http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3590/ ).
Project description:Long-term dietary intake influences the structure and activity of the trillions of microorganisms residing in the human gut, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles. RNA-Seq analysis of the human gut microbiome during consumption of a plant- or animal-based diet.
Project description:A human gut-on-a-chip microdevice was used to coculture multiple commensal microbes in contact with living human intestinal epithelial cells for more than a week in vitro and to analyze how gut microbiome, inflammatory cells, and peristalsis-associated mechanical deformations independently contribute to intestinal bacterial overgrowth and inflammation. This in vitro model replicated results from past animal and human studies, including demonstration that probiotic and antibiotic therapies can suppress villus injury induced by pathogenic bacteria. By ceasing peristalsis-like motions while maintaining luminal flow, lack of epithelial deformation was shown to trigger bacterial overgrowth similar to that observed in patients with ileus and inflammatory bowel disease. Analysis of intestinal inflammation on-chip revealed that immune cells and lipopolysaccharide endotoxin together stimulate epithelial cells to produce four proinflammatory cytokines (IL-8, IL-6, IL-1β, and TNF-α) that are necessary and sufficient to induce villus injury and compromise intestinal barrier function. Thus, this human gut-on-a-chip can be used to analyze contributions of microbiome to intestinal pathophysiology and dissect disease mechanisms in a controlled manner that is not possible using existing in vitro systems or animal models. 6 samples, 2 biological replicates for each 3 conditions.
Project description:Background and Aims: The impact of cigarette smoke on inflammatory bowel disease has been established by a large number of epidemiological, clinical, and preclinical studies. Exposure to cigarette smoke is associated with a higher risk of developing Crohn’s disease but is inversely correlated with the development, disease risks, progression, and relapse rate of ulcerative colitis. Few mechanistic studies have investigated the effect of cigarette smoke on intestinal inflammation and microbial composition. Methods: Three groups of mice were exposed to three different concentrations of cigarette smoke for a total of 4 weeks, including 5 days of dextran sulfate sodium treatment to induce colitis and a 7-day recovery period. A comprehensive and integrated comparative analysis of the global colon transcriptome and microbiome, as well as classical endpoints, was performed. Results: Cigarette smoke exposure significantly decreased the severity induced colitis. Colon transcriptome analysis revealed that cigarette smoke downregulated specific pathways in a concentration-dependent manner, affecting both the inflammatory state and composition of the gut microbiome. Metagenomics analysis demonstrated that cigarette smoke can modulate dextran sulfate sodium-induced dysbiosis of specific bacterial genera, contributing to resolve the inflammation or accelerate recovery. Conclusions: Cigarette smoke alters gut microbial composition and reduces inflammatory responses in a concentration-dependent manner. The present study lays the foundation for investigating potential molecular mechanisms responsible for the attenuation of colitis by cigarette smoke.
Project description:The gut microbiome is significantly altered in inflammatory bowel diseases, but the basis of these changes is not well understood. We have combined metagenomic and metatranscriptomic profiling of the gut microbiome to assess changes to both bacterial community structure and transcriptional activity in a mouse model of colitis. Gene families involved in microbial resistance to oxidative stress, including Dps/ferritin, Fe-dependent peroxidase and glutathione S-transferase, were transcriptionally up-regulated in colitis, implicating a role for increased oxygen tension in gut microbiota modulation. Transcriptional profiling of the host gut tissue and host RNA in the gut lumen revealed a marked increase in the transcription of genes with an activated macrophage and granulocyte signature, suggesting the involvement of these cell types in influencing microbial gene expression. Down-regulation of host glycosylation genes further supports a role for inflammation-driven changes to the gut niche that may impact the microbiome. We propose that members of the bacterial community react to inflammation-associated increased oxygen tension by inducing genes involved in oxidative stress resistance. Furthermore, correlated transcriptional responses between host glycosylation and bacterial glycan utilisation support a role for altered usage of host-derived carbohydrates in colitis. Complementary RNA-seq and DNA-seq data sets of the microbiome from this study have also been deposited at ArrayExpress under accession number E-MTAB-3562 ( http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3562/ ).
Project description:Endoplasmic reticulum stress is closely associated with the onset and progression of inflammatory bowel disease. ERdj5 is an endoplasmic reticulum-resident protein disulfide reductase that mediates the cleavage and degradation of misfolded proteins. Although ERdj5 expression is significantly higher in the colonic tissues of patients with inflammatory bowel disease than in healthy controls, its role in inflammatory bowel disease has not yet been reported. Hence, in the current study, we utilized ERdj5-knockout mice to investigate the potential roles of ERdj5 in inflammatory bowel disease. ERdj5 deficiency causes severe inflammation in mouse colitis models and weakens gut barrier function by increasing NF-κB-mediated inflammation. ERdj5 may not be indispensable for goblet cell function under steady-state conditions, while its deficiency induces goblet cell apoptosis under inflammatory stimuli.
Project description:HIV is known to severely affect the gastrointestinal immune system, in particular compartments of immunity that regulate gut microbial composition. Furthermore, recent studies in mice have shown that dysregulation of the gut microbiome can contribute to chronic inflammation, which is a hallmark of HIV and is thought to fuel disease progression. We sought to understand whether the gut microbial community differs in HIV-infected subjects, and whether such putative differences are associated with disease progression. We found that dysbiosis in the gut mucosally-adherent bacterial community associates with markers of chronic inflammation and disease progression in HIV-infected subjects, and this dysbiosis remains in many subjects undergiong antiretroviral therapy. We used G3 PhyloChip microarrays (commercially available from Second Genome, Inc.) to profile gut bacteria in rectosigmoid biopsies from 32 subjects: 6 HIV-infected viremic untreated (VU), 18 HIV-infected subjects on highly active antiretroviral therapy (HAART), 1 HIV-infected long-term non-progressor that is untreated (LTNP), and 9 HIV-uninfected subjects (HIV-).