Project description:Archaea, together with Bacteria, represent the two main divisions of life on Earth, with many of the defining characteristics of the more complex eukaryotes tracing their origin to evolutionary innovations first made in their archaeal ancestors. One of the most notable such features is nucleosomal chromatin, although archaeal histones and chromatin differ significantly from those of eukaryotes. Despite increased interest in archaeal histones in recent years, the properties of archaeal chromatin have been little studied using genomic tools. Here, we adapt the ATAC-seq assay to the archaeal context and use it to map the accessible landscape of the genome of the euryarchaeote Haloferax volcanii. We integrate the resulting datasets with genome-wide maps of active transcription and single-stranded DNA (ssDNA), and find that while H. volcanii promoters exist in a preferentially accessible state, modulation of transcriptional activity is not associated with changes in promoter accessibility, unlike the typical situation in eukaryotes. Applying orthogonal single-molecule footprinting methods, we quantify the absolute levels of physical protection of H. volcanii, and find that archaeal nucleosomal chromatin is at its baseline comparably to slightly more open than that of eukaryotes. We also evaluate the degree of coordination of transcription within archaeal operons and make the unexpected observation that some CRISPR arrays are associated with highly prevalent ssDNA structures. These results provide a foundation for the future functional studies of archaeal chromatin.
Project description:Chemical communication is crucial in ecosystems with complex microbial assemblages. However, due to archaeal cultivation challenges, our understanding of the structure diversity and function of secondary metabolites (SMs) within archaeal communities is limited compared to the extensively studied and well-documented bacterial counterparts. Our comprehensive investigation into the biosynthetic potential of archaea, combined with metabolic analyses and the first report of heterologous expression in archaea, has unveiled the previously unexplored biosynthetic capabilities and chemical diversity of archaeal ribosomally synthesized and post-translationally modified peptide (RiPP). We have identified twenty-four new lanthipeptides of RiPPs exhibiting unique chemical characteristics, including a novel subfamily featuring an unexplored type with diamino-dicarboxylic (DADC) termini, largely expanding the chemical landscape of archaeal SMs. This sheds light on the chemical novelty of archaeal metabolites and emphasizes their potential as an untapped resource for natural product discovery. Additionally, archaeal lanthipeptides demonstrate specific antagonistic activity against haloarchaea, mediating the unique biotic interaction in the halophilic niche. Furthermore, they showcased a unique ecological role in enhancing the host's motility by inducing the rod-shaped cell morphology and upregulating the archaellum gene flgA1, facilitating the archaeal interaction with abiotic environments. These discoveries broaden our understanding of archaeal chemical language and provide promising prospects for future exploration of SM-mediated interaction.