Project description:The actin-related proteins (ARPs) comprise a conserved protein family. Arp4p is found in large multisubunits of the INO80 and SWR1 chromatin remodeling complexes and in the NuA4 histone acetyltransferase complex. Here we show that arp4 (arp4S23AD159A) temperature-sensitive cells are defective in G2/M phase function. arp4 mutants are sensitive to the microtubule depolymering agent benomyl and arrest at G2/M phase at restrictive temperature. Arp4p is associated with centromeric and telomeric regions throughout cell cycle. Ino80p, Esa1p, and Swr1p, components of the INO80, NuA4, and SWR1 complexes, respectively, also associate with centromeres. The association of many kinetochore components including Cse4p, a component of the centromere nucleosome, Mtw1p, and Ctf3p is partially impaired in arp4 cells, suggesting that the G2/M arrest of arp4 mutant cells is due to a defect in formation of the chromosomal segregation apparatus. Keywords: ChIP-chip ⢠The goal of the experiment Genome-wide localization of Arp4 binding sites in Saccharomyces cerevisiae ⢠Experimental factors Distribution of Arp4 in WT in G2/M phase in the presence of nocodazole (Saccharomyces cerevisiae). ⢠Experimental design ChIP analysis: Hybridization data for ChIP fraction was compared with WCE (whole cell extract) fraction. Chromosome III, IV,V,VI S. cerevisiae: SC3456a520015F, P/N# 520015, affymetrix tiling array were used.
Project description:The actin-related proteins (ARPs) comprise a conserved protein family. Arp4p is found in large multisubunits of the INO80 and SWR1 chromatin remodeling complexes and in the NuA4 histone acetyltransferase complex. Here we show that arp4 (arp4S23AD159A) temperature-sensitive cells are defective in G2/M phase function. arp4 mutants are sensitive to the microtubule depolymering agent benomyl and arrest at G2/M phase at restrictive temperature. Arp4p is associated with centromeric and telomeric regions throughout cell cycle. Ino80p, Esa1p, and Swr1p, components of the INO80, NuA4, and SWR1 complexes, respectively, also associate with centromeres. The association of many kinetochore components including Cse4p, a component of the centromere nucleosome, Mtw1p, and Ctf3p is partially impaired in arp4 cells, suggesting that the G2/M arrest of arp4 mutant cells is due to a defect in formation of the chromosomal segregation apparatus. Keywords: ChIP-chip
Project description:Background: Chromatin remodeling complexes facilitate the access of enzymes that mediate transcription, replication or repair of DNA by modulating nucleosome position and/or composition. Ino80 is the DNA-dependent Snf2-like ATPase subunit of a complex whose nucleosome remodeling activity requires actin-related proteins, Arp4, Arp5 and Arp8, as well as two RuvB-like DNA helicase subunits. Budding yeast mutants deficient for Ino80 function are not only hypersensitive to reagents that induce DNA double strand breaks, but also to those that impair replication fork progression. Results: To understand why ino80 mutants are sensitive to agents that perturb DNA replication, we used chromatin immunoprecipitation to map the binding sites of the Ino80 chromatin remodeling complex on four budding yeast chromosomes. We found that Ino80 and Arp5 binding sites coincide with origins of DNA replication and tRNA genes. In addition, Ino80 was bound at 67% of the promoters of genes that are sensitive to ino80 mutation. When replication forks were arrested near origins in the presence of hydroxyurea (HU), the presence of the Ino80 complex at stalled forks and at unfired origins increased dramatically. Importantly, the resumption of DNA replication after release from a HU block was impaired in the absence of Ino80 activity. Mutant cells accumulated double-strand breaks as they attempted to restart replication. Consistently, ino80-deficient cells, although proficient for checkpoint activation, delay recovery from the checkpoint response. Conclusions: The Ino80 chromatin remodeling complex is enriched at stalled replication forks where it promotes the resumption of replication upon recovery from fork arrest. Keywords: ChIP-chip • The goal of the experiment Genome-wide localization of Ino80 on chromosome in Saccharomyces cerevisiae • Keywords DNA replication, Saccharomyces cerevisiae, Genome tilling array (chromosome III, IV, V, VI) • Experimental factor Distribution of Ino80 in random culture Distribution of Ino80 in G1 phase Distribution of Ino80 in early S phase • Experimental design ChIP analyses: W303 background cells expressing Myc-tagged Ino80 were used for the ChIP using anti-Myc monoclonal antibody (9E11). ChIP-chip analyses: In all cases, hybridization data for ChIP fraction was compared with WCE (whole cell extract) fraction. Saccharomyces cerevisiae affymetrix genome tiling array (SC3456a520015F for chromosome III, IV, V, VI) was used. • Quality control steps taken Confirmation of several loci by quantitative real time PCR.
Project description:Background: Chromatin remodeling complexes facilitate the access of enzymes that mediate transcription, replication or repair of DNA by modulating nucleosome position and/or composition. Ino80 is the DNA-dependent Snf2-like ATPase subunit of a complex whose nucleosome remodeling activity requires actin-related proteins, Arp4, Arp5 and Arp8, as well as two RuvB-like DNA helicase subunits. Budding yeast mutants deficient for Ino80 function are not only hypersensitive to reagents that induce DNA double strand breaks, but also to those that impair replication fork progression. Results: To understand why ino80 mutants are sensitive to agents that perturb DNA replication, we used chromatin immunoprecipitation to map the binding sites of the Ino80 chromatin remodeling complex on four budding yeast chromosomes. We found that Ino80 and Arp5 binding sites coincide with origins of DNA replication and tRNA genes. In addition, Ino80 was bound at 67% of the promoters of genes that are sensitive to ino80 mutation. When replication forks were arrested near origins in the presence of hydroxyurea (HU), the presence of the Ino80 complex at stalled forks and at unfired origins increased dramatically. Importantly, the resumption of DNA replication after release from a HU block was impaired in the absence of Ino80 activity. Mutant cells accumulated double-strand breaks as they attempted to restart replication. Consistently, ino80-deficient cells, although proficient for checkpoint activation, delay recovery from the checkpoint response. Conclusions: The Ino80 chromatin remodeling complex is enriched at stalled replication forks where it promotes the resumption of replication upon recovery from fork arrest. Keywords: ChIP-chip • The goal of the experiment Genome-wide localization of Ino80 and Arp5 on chromosome in Saccharomyces cerevisiae • Keywords DNA replication, Saccharomyces cerevisiae, Genome tilling array (chromosome III, IV, V, VI) • Experimental factor Distribution of Ino80 and Arp5 in wild type in random culture Distribution of Ino80 in G1 cells Distribution of Ino80 in early S phase cells • Experimental design ChIP analyses: W303 background cells expressing Myc tagged Ino80 were used for the ChIP using anti-Myc monoclonal antibody (9E11). ChIP analyses: W303 background cells expressing Myc tagged Ino80 were used for the ChIP using anti-Arp5 polyclonal antibody. ChIP-chip analyses: In all cases, hybridization data for ChIP fraction was compared with WCE (whole cell extract) fraction. Saccharomyces cerevisiae affymetrix genome tiling array (SC3456a520015F for chromosome III, IV, V, VI) was used. • Quality control steps taken Confirmation of several loci by quantitative real time PCR.
Project description:To maintain genomic stability, re-initiation of eukaryotic DNA replication within a single cell cycle is blocked by multiple mechanisms that inactivate or remove replication proteins after G1 phase. Consistent with the prevailing notion that these mechanisms are redundant, we previously showed that simultaneous deregulation of three replication proteins, ORC, Cdc6 and Mcm2-7, was necessary to cause detectable bulk re-replication in G2/M phase in Saccharomyces cerevisiae. In this study, we used microarray comparative genomic hybridization (CGH) to provide a more comprehensive and detailed analysis of re-replication. This genome-wide analysis suggests that re-initiation in G2/M phase primarily occurs at a subset of both active and latent origins, but is independent of chromosomal determinants that specify the use and timing of these origins in S phase. We demonstrate that re-replication can be induced within S phase, but differs in amount and location fr om re-replication in G2/M phase, illustrating the dynamic nature of DNA replication controls. Finally, we show that very limited re-replication can be detected by microarray CGH when only two replication proteins are deregulated, suggesting that the mechanisms blocking re-replication are not redundant. Therefore we propose that eukaryotic re-replication at levels below current detection limits may be more prevalent and a greater source of genomic instability than previously appreciated. Keywords: comparative genomic hybridization (CGH), DNA replication, re-replication