Project description:Polybrominated diphenyl ethers (PBDEs) are persistent, highly toxic, and widely distributed environmental pollutants. The microbial populations and functional reductive dehalogenases (RDases) responsible for PBDEs debromination in anoxic systems remain poorly understood, which confounds bioremediation of PBDE-contaminated sites. Here we report a PBDE-debrominating enrichment culture dominated by a previously undescribed Dehalococcoides mccartyi population. A D. mccartyi strain, designated TZ50, whose genome contains 25 putative RDase encoding genes was isolated from the debrominating enrichment culture. Strain TZ50 dehalogenated a mixture of penta- and tetra-BDE congeners (total BDEs 1.48 uM) to diphenyl ether within two weeks (0.58 uM Br- /d) via ortho- and meta- bromine elimination; strain TZ50 also dechlorinated tetrachloroethene (PCE) to vinyl chloride and ethene (260.2 M Cl- /d). Native-PAGE, proteomic profiling, and in vitro enzymatic activity assays implicated the involvement of three RDases in PBDEs and PCE dehalogenation. Two RDases, TZ50_0172 (PteATZ50) and TZ50_1083 (TceATZ50), were responsible for debromination of penta- and tetra-BDEs to di-BDE. TZ50_0172 and TZ50_1083 were also implicated in dechlorination of PCE to TCE and of TCE to vinyl chloride/ethene, respectively. The other expressed dehalogenase, TZ50_0090, was associated with debromination of di-BDE to diphenyl ether, but its role in PCE dechlorination was unclear. Comparatively few RDases are known to be involved in PBDE debromination and the identification of PteATZ50, TceATZ50, and TZ50_0090 provides additional information for evaluating debromination potential at contaminated sites. Moreover, the bifunctionality of the PteATZ50 and TceATZ50 in both PBDEs and PCE dehalogenation makes strain TZ50 a suitable candidate for remediation of co-contaminated sites.
Project description:Transcriptional profiling of the Donna II mixed community containing Dehalococcoides mccartyi strain 195 comparing a batch starved control to the mixed community being fed 1,2,3,4-tetrachlorobenzene as an electron acceptor. The goal was to determine which transcripts are regulated in response to a shift in a different electron acceptor rather than the consistent tetrachloroethene (PCE) that the parent reactor was maintained on.
Project description:Tetrachloroethene (PCE) and trichloroethene (TCE) are prevalent groundwater contaminants that can be completely reductively dehalogenated by Dehalococcoides organisms. A Dehalococcoides-containing microbial consortium (ANAS) with the ability to degrade TCE to ethene, an innocuous end-product, was previously enriched from contaminated soil. A whole-genome photolithographic microarray was developed based on the genome of Dehalococcoides ethenogenes 195 (strain 195). This microarray contains probes designed to hybridize to >99% of the predicted protein-coding sequences in the strain 195 genome. DNA from ANAS was hybridized to the microarray to characterize the genomic content of the ANAS enrichment. The microarray revealed that the genes associated with central metabolism including an apparently incomplete carbon fixation pathway, cobalamin salvaging system, nitrogen fixation pathway, and five hydrogenase complexes are present in both strain 195 and ANAS. Although the gene encoding the TCE reductase tceA was detected, 13 of the 19 reductive dehalogenase genes present in strain 195 were not detected in ANAS. Additionally, 88% of the genes in predicted integrated genetic elements in strain 195 were not detected in ANAS, consistent with these elements being genetically mobile. Sections of the tryptophan operon and an operon encoding an ABC transporter in strain 195 were also not detected in ANAS. These insights into the diversity of Dehalococcoides genomes will improve our understanding of the physiology and evolution of these bacteria which is essential in developing effective strategies for bioremediation of PCE and TCE in the environment. Keywords: comparative genomic hybridization Genomic DNA from each culture was divided into replicate samples which were independently fragmented, labeled, and hybridized to arrays. Two microarrays were processed for the positive control (strain 195), two for the negative control (D. restrictus), and five for the ANAS enrichment culture(two analyses from one biological sample followed one year later by three analyses of a second biological sample).
Project description:Transcriptional profiling of Dehalococcoides mccartyi in the commercially available KB-1™ consortia comparing control standard TCE batch fed culture to treatments either introducing the culture to a standard batch feeding, stressful condition, or continous feed rate.
Project description:Tetrachloroethene (PCE) and trichloroethene (TCE) are prevalent groundwater contaminants that can be completely reductively dehalogenated by Dehalococcoides organisms. A Dehalococcoides-containing microbial consortium (ANAS) with the ability to degrade TCE to ethene, an innocuous end-product, was previously enriched from contaminated soil. A whole-genome photolithographic microarray was developed based on the genome of Dehalococcoides ethenogenes 195 (strain 195). This microarray contains probes designed to hybridize to >99% of the predicted protein-coding sequences in the strain 195 genome. DNA from ANAS was hybridized to the microarray to characterize the genomic content of the ANAS enrichment. The microarray revealed that the genes associated with central metabolism including an apparently incomplete carbon fixation pathway, cobalamin salvaging system, nitrogen fixation pathway, and five hydrogenase complexes are present in both strain 195 and ANAS. Although the gene encoding the TCE reductase tceA was detected, 13 of the 19 reductive dehalogenase genes present in strain 195 were not detected in ANAS. Additionally, 88% of the genes in predicted integrated genetic elements in strain 195 were not detected in ANAS, consistent with these elements being genetically mobile. Sections of the tryptophan operon and an operon encoding an ABC transporter in strain 195 were also not detected in ANAS. These insights into the diversity of Dehalococcoides genomes will improve our understanding of the physiology and evolution of these bacteria which is essential in developing effective strategies for bioremediation of PCE and TCE in the environment. Keywords: comparative genomic hybridization
Project description:The chlorinated ethene-respiring bacteria of the genus Dehalococcoides are important for bioremediation. A microarray targeting genes from all available sequenced genomes of the Dehalococcoides genus was designed with 4305 probe sets to target 98.6% of all genes from strains 195, CBDB1, BAV1, and VS. The microarrays were validated with genomic DNA (gDNA) of strains 195 and BAV1 and satisfactory analytical reproducibility, quantitative response and gene detection accuracy were obtained. These microarrays were applied to query the genomes of two recently isolated Dehalococcoides strains, ANAS1 and ANAS2. Strains ANAS1 and ANAS2 can both couple the reduction of TCE, cDCE and 1,1-DCE but not PCE and tDCE with growth while only strain ANAS2 couples VC reduction to growth. Analysis of the respective gDNA using the microarrays showed that the genomes of both strains are similar to each other and to strain 195, except for genes that are within the previously defined integrated elements (IEs) or high plasticity regions (HPRs). Similar results to the combined isolates were obtained when gDNA of ANAS, the enrichment culture from which the two Dehalococcoides isolates originated, was applied to the microarrays. The genome similarities, together with the distinct chlorinated ethene usage of strains ANAS1, ANAS2 and 195 demonstrate that closely phylogenetically related strains can be physiologically different. This incongruence between physiology and core genome phylogeny appears to be driven by the presence of distinct reductive dehalogenase (RDase)-encoding genes with characterized chlorinated ethene functions (pceA, tceA in strain 195; tceA in strain ANAS1; vcrA in strain ANAS2). Genes encoding central metabolic functions of strain 195 were all detected in strains ANAS1 and ANAS2, while interestingly, the tryptophan operon of these strains is similar to that of strain VS. Overall, the microarrays are a valuable high-throughput tool for comparative genomics of un-sequenced Dehalococcoides-containing samples. The genomic DNA (gDNA) of each culture was analyzed in triplicate. gDNA from strain 195 and strain BAV1 was used as positive control, while gDNA from Anaeromyxobacter dehalogenans strain 2CP-C served as negative control in validating the microarray. gDNA from the two newly isolated strains ANAS1 and ANAS2 as well as the enrichment culture (ANAS) where the two strains originated was also analyzed.