Project description:Chemical contamination is a common threat to biota thriving in estuarine and coastal ecosystems. In particular, trace metals tend to accumulate and exert deleterious effects on small invertebrates such as zooplankton, which are essential trophic links between phytoplankton and higher-level consumers in aquatic food webs. Beyond the direct effects of the contamination, we hypothesized that metal exposure could also affect the zooplankton microbiota, which in turn might further impair host fitness. To assess this assumption, copepods (Eurytemora affinis) were sampled in the oligo-mesohaline zone of the Seine estuary and exposed to dissolved copper (25 µg.L-1) over a 72-hour time period. Copepod response to copper treatment was assessed by determining transcriptomic changes in E. affinis along with shifts in its microbiota. Unexpectedly, very few genes were differentially expressed in copper-treated copepods compared to controls, with most of the reported differences involving genes upregulated in males compared to females. In contrast, copper increased the taxonomic diversity indices of the microbiota and resulted in substantial compositional changes at both the phyla and genus levels. Phylogenetic reconstruction of the microbiota further suggested that copper mitigated phylogenetic relatedness of taxa at the basal tree structure of the phylogeny, whereas it strengthened it at the terminal branches. Increased terminal phylogenetic clustering in copper-treated copepods concurred with higher proportions of bacterial genera previously identified as copper resistant (e.g., Pseudomonas, Acinetobacter, and Alkanindiges) and a higher relative abundance of the copA gene encoding a periplasmic inducible multi-copper oxidase. Overall, these results revealed very contrasting responses of E. affinis and its microbiota to copper exposure. The enrichment in micro-organisms likely to perform copper sequestration and/or enzymatic transformation processes, underlines here the need to follow the microbial component during the evaluation of the vulnerability of the zooplankton to the metallic stress.
Project description:Microplastics (MPs) as widespread contamination pose high risk for aquatic organisms.Intestinal microbiotahas have high interaction with immune system of host body. In this study, intestinal microbiota of zebrafish after Polystyrene (PS-MPs) exposure were characterized by 16S rDNA amplicon sequencing. We found that 100nm and 200μm PS-MPs exposure significantly increased diversity of intestinal microbiota and all the three sizes of PS-MPs increased abundance of pathogenic bacteria.
2019-10-01 | GSE136108 | GEO
Project description:effects of microplastics on collembolan gut microbiota
Project description:Cellular uptake and cytotoxicity data from neural cells treated with microplastics were compared and contrasted. Transcriptomic data obtained by RNA-seq from astrocytes treated with microplastics was assessed further.
Project description:The contamination of marine ecosystems with microplastics, such as the polymer polyethylene, a commonly used component of single-use packaging, is of global concern. Although it has been suggested that biodegradable polymers, such as polylactic acid, may be used to replace some polyethylene packaging, little is known about their effects on marine organisms. Blue mussels, Mytilus edulis, have become a “model organism” for investigating the effects of microplastics in marine ecosystems. We show here that repeated exposure, over a period of 52 days in an outdoor mesocosm setting, of M. edulis to polyethylene microplastics reduced the number of byssal threads produced and the attachment strength (tenacity) by ~50%. Exposure to either type of microplastic altered the haemolymph proteome and, although a conserved response to microplastic exposure was observed, overall polyethylene resulted in more changes to protein abundances than polylactic acid. Many of the proteins affected are involved in vital biological processes, such as immune- and stress- regulation, metabolism and cellular and structural development. Our study highlights the utility of mass spectrometry-based proteomics to assess the health of key marine organisms and identifies the potential mechanisms by which microplastics, both conventional and biodegradable, could affect their ability to form and maintain reefs.
Project description:Microplastics represent a growing environmental concern for the oceans due to their potential capability to adsorb different classes of pollutants, thus representing a still unexplored source of exposure for aquatic organisms. In this study polystyrene (PS) microplastics were characterized for their capability to adsorb pyrene (PYR) as model compound for polycyclic aromatic hydrocarbons, and transfer this chemical to filter feeding mussels Mytilus galloprovincialis. Gene expression analyses of Mytilus galloprovincialis exposed to polystyrene (PS) microplastics and to polystyrene contaminated with pyrene (PS-PYR) have been performed trough a DNA microarray platform.
2014-12-27 | GSE57460 | GEO
Project description:Effects of microplastics on zebrafish
| PRJNA877708 | ENA
Project description:Effects of microplastics on zebrafish
Project description:The pollution of the environment with microplastics has been recognized as an emerging threat worldwide. Due to an exponential increase in production of plastic over the last eight decades and its longevity in the environment, accumulating amounts of microplastic are polluting rivers, lakes and the ocean. Their entry pathways are diverse and still only incompletely understood. Since microplastics are usually defined smaller than 5 mm, it can be ingested by a wide range of aquatic organisms including teleost fish. There are different approaches to study the detrimental effects of pollutants on aquatic organisms. On the one hand, generic baseline parameters such as growth and mortality are regularly considered, often accompanied by established stress parameters such as cortisol, heat shock proteins or lipid oxidation. The conflicting findings to date suggest that these parameters might not be sensitive enough to indicate the physiological effects of environmentally relevant microplastic concentrations. For this reason, more sophisticated biological approaches could provide new insights into whether and how microplastics harm fish. To date, proteomic approaches have been used only sporadically when investigating the effects of microplastic exposure on aquatic organisms. So far, this approach has not been used to address potential microplastic impacts in fish. In the present study, a proteomic approach was trialed alongside established methods in an investigation of fish experiencing long-term exposure to environmentally relevant concentrations of microplastics. Two groups of rainbow trout (Oncorhynchus mykiss were exposed to microplastic concentrations and sizes currently encountered in wild fish and an increased concentration, expected to occur in the near future. These groups where compared to a control group maintained in MP free conditions. Five fish of each treatment were sampled at three time points (week 1, week 4, week 17). The experiments were performed in triplicates, resulting in 45 samples used in the proteomic analysis.
Project description:Humans and animals encounter a summation of exposures during their lifetime (the exposome). In recent years, the scope of the exposome has begun to include microplastics. Microplastics (MPs) have increasingly been found in locations where there could be an interaction with Salmonella enterica Typhimurium, one of the commonly isolated serovars from processed chicken. In this study, the microbiota response to a 24-hour co-exposure to Salmonella enterica Typhimurium and/or low-density polyethylene (PE) microplastics in an in vitro broiler cecal model was determined using 16S rRNA amplicon sequencing (Illumina) and untargeted metabolomics. Community sequencing results indicated that PE fiber with and without S. Typhimurium yielded a lower Firmicutes/Bacteroides ratio compared to other treatment groups, which is associated with poor gut health, and overall had greater changes to the cecal microbial community composition. However, changes in the total metabolome were primarily driven by the presence of S. Typhimurium. Additionally, the co-exposure to PE Fiber and S. Typhimurium caused greater cecal microbial community and metabolome changes than either exposure alone. Our results indicate that polymer shape is an important factor in effects resulting from exposure. It also demonstrates that microplastic-pathogen interactions cause metabolic alterations to the chicken cecal microbiome in an in vitro chicken cecal model.