Project description:Drought stress is the main environmental factor influencing hemp growth and yield. However, little is known about the response mechanism of hemp to drought stress. A total of 44.10 M tags and 8.91G bases were sequenced in the control hemp (CK) and drought stress hemp (DS) libraries. A total of 1292 differentially expressed genes (DEGs), including 883 up-regulated genes and 409 down-regulated genes, were identified. These results may contribute toward improving our understanding about the drought stress regulatory mechanism of hemp, and improving its drought tolerance ability.
Project description:Drought stress is the main environmental factor influencing hemp growth and yield. However, little is known about the response mechanism of hemp to drought stress. A total of 44.10 M tags and 8.91G bases were sequenced in the control hemp (CK) and drought stress hemp (DS) libraries. A total of 1292 differentially expressed genes (DEGs), including 883 up-regulated genes and 409 down-regulated genes, were identified. These results may contribute toward improving our understanding about the drought stress regulatory mechanism of hemp, and improving its drought tolerance ability. 3' tag-based DGE libraries were generated to exam the differentially expressed gene between drought-stressed and well-watered hemp
Project description:The objective in this study was to develop and characterize the chemistry and genetics of a collection of feral hemp germplasm from across Nebraska for use in a hemp breeding program. An additional goal was to compare the chemistry and genetics of male and female flower structures. RNA was extracted from isolated, dissected flower tissue of one female and one male plant from each of three populations (total six samples). These plants were derived from seeds collected in Knox, Madison, and Merrick counties. Illumina reads were obtained from the RNA extracts, mapped onto a C. sativa reference genome, and gene expression levels were determined.
Project description:Cannabis sativa L. is an annual herbaceous crop grown for the production of long extraxylary fibers, the bast fibers, rich in cellulose and used both in the textile and biocomposite sectors. Despite being herbaceous, hemp undergoes secondary growth and this is well exemplified by the hypocotyl. The hypocotyl was already shown to be a suitable model to study secondary growth in other herbaceous species, namely Arabidopsis thaliana and it shows an important practical advantage, i.e. elongation and radial thickening are temporally separated. This study focuses on the mechanisms marking the transition from primary to secondary growth in the hemp hypocotyl by analysing the suite of events accompanying vascular tissue and bast fiber development. RNA-Seq transcriptomics, imaging and quantification of phytohormones were carried out on four representative developmental stages (i.e. 6-9-15-20 days after sowing) to provide a first comprehensive profiling of the events associated with primary and secondary growth in hemp. This multidisciplinary approach provides cell wall-related snapshots of the growing hemp hypocotyl and identifies marker genes associated with the young (expansins, β-galactosidases and transcription factors involved in light-related processes) and the older hypocotyl (secondary cell wall biosynthetic genes and transcription factors).
Project description:The purpose of this study is to assess the effect of a hemp-based cannabidiol (CBD) product, Ananda Hemp Spectrum Gelcaps, on the severity and duration of chemotherapy-induced neuropathy (CIPN) among non-metastatic breast, uterine, pancreatic, and colorectal cancer, and all stages of ovarian cancer in patients who received neoadjuvant or adjuvant therapy that included neurotoxic chemotherapeutic agents.
Project description:The associated files are mass spec data from mixed-bed ion exchange chromatography fractions. The starting material wasa clarified homogenate of Trader Joe's "Raw Shelled Hemp Seed".
Project description:Three 2cm segments were excised from different parts (TOP, MID, BOT) along the vertical axis of a 4 week old stem of hemp (C. sativa), and the outer layers of the stem were compared using a cDNA amplicon array. Each segment represented a different developmental stage, especially in relation to bast fibre differentiation (i.e. TOP= elongation, MID=transition, BOT= thickening). Only the cDNAs that showed the highest differential expression were sequenced.