Project description:The indigenous human gut microbiota is a major contributor to the human superorganism with established roles in modulating nutritional status, immunity, and systemic health including diabetes and obesity. The complexity of the gut microbiota consisting of over 1012 residents and approximately 1000 species has thus far eluded systematic analyses of the precise effects of individual microbial residents on human health. In contrast, health benefits have been shown upon ingestion of certain so-called probiotic Lactobacillus strains in food products and nutritional supplements, thereby providing a unique opportunity to study the global responses of a gut-adapted microorganism in the human gut and to identify the molecular mechanisms underlying microbial modulation of intestinal physiology, which might involve alterations in the intestinal physico-chemical environment, modifications in the gut microbiota, and/or direct interaction with mucosal epithelia and immune cells. Here we show by transcriptome analysis using DNA microarrays that the established probiotic bacterium, L. plantarum 299v, adapts its metabolic capacity in the human digestive tract for carbohydrate acquisition and expression of exo-polysaccharide and proteinaceous cell surface compounds. This report constitutes the first application of global gene expression profiling of a gut-adapted commensal microorganism in the human gut. Comparisons of the transcript profiles to those obtained for L. plantarum WCFS1 in germ-free mice revealed conserved L. plantarum responses indicative of a core transcriptome expressed in the mammalian gut and provide new molecular targets for determining microbial-host interactions affecting human health. Hybridization of the samples against a common reference of gDNA isolated from L. plantarum 299v
Project description:Obesity and overweight are closely related to diet, and gut microbiota play an important role in body weight and human health. The aim of this study was to explore how Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 supplementation alleviate obesity by modulating the human gut microbiome. A randomized, double-blind, placebo-controlled study was conducted on 72 overweight individuals. Over a 12-week period, probiotic groups consumed 5×10^9 colony-forming units of HY7601 and KY1032), whereas the placebo group consumed the same product without probiotics. After treatment, the probiotic group displayed a reduction in body weight (p <0.001), visceral fat mass (p <0.025), and waist circumference (p <0.007), and an increase in adiponectin (p <0.046), compared with the placebo group. Additionally, HY7601 and KY1032 supplementation modulated bacterial gut microbiota characteristics and beta diversity by increasing Bifidobacteriaceae and Akkermansiaceae, and decreasing Prevotellaceae and Selenomonadaceae. In summary, HY7601 and KY1032 probiotics exert anti-obesity effects by regulating the gut microbiota; hence, they have therapeutic potential for preventing or alleviating obesity and overweight.
2022-05-12 | GSE202489 | GEO
Project description:Cinobufacini ameliorates experimental colitis via modulating the composition of gut microbiota
Project description:A recently layer of gene expression regulation is N6-methyladenosine (m6A) mRNA modification. The role of gut microbiota in modulating host m6A epitranscriptomic and gene expression has not been studied. To decipher the role of gut microbiome, we profiled m6A mRNA modification epitranscriptomic mark in conventional mice compared to germ free mice. Transcriptome-wide mapping of host m6A mRNA modifications in four mice tissues allowed us to discover that gut microbiota can greatly impact host m6A mRNA modifications. The expression levels of m6A writers in mice tissues are regulated by gut microbiota. In conclusion, we report transcriptome-wide mapping of host m6A mRNA modifications regulated by gut microbiota. The present study can help better understand the role of the microbiome in host gene expression and host-microbiome interactions.
2018-12-28 | GSE120262 | GEO
Project description:Astragaloside IV Ameliorates Isoprenaline-Induced Cardiac Fibrosis in Mice via Modulating Gut Microbiota and Fecal Metabolites
Project description:Non-alcoholic fatty liver disease (NAFLD) is rapidly becoming the most common liver disease worldwide, yet the pathogenesis of NAFLD is only partially understood. Here, we investigated the role of the gut bacteria in NAFLD by stimulating the gut bacteria via feeding mice the fermentable dietary fiber guar gum and suppressing the gut bacteria via chronic oral administration of antibiotics. Guar gum feeding profoundly altered the gut microbiota composition, in parallel with reduced diet-induced obesity and improved glucose tolerance. Strikingly, despite reducing adipose tissue mass and inflammation, guar gum enhanced hepatic inflammation and fibrosis, concurrent with markedly elevated plasma and hepatic bile acid levels. Consistent with a role of elevated bile acids in the liver phenotype, treatment of mice with taurocholic acid stimulated hepatic inflammation and fibrosis. In contrast to guar gum, chronic oral administration of antibiotics effectively suppressed the gut bacteria, decreased portal secondary bile acid levels, and attenuated hepatic inflammation and fibrosis. Neither guar gum or antibiotics influenced plasma lipopolysaccharide levels. In conclusion, our data indicate a causal link between changes in gut microbiota and hepatic inflammation and fibrosis in a mouse model of NAFLD, possibly via alterations in bile acids.
2017-06-06 | GSE76087 | GEO
Project description:Zuogui Jiangtang Shuxin formula Ameliorates Diabetic cardiomyopathy Mice via modulating Gut-Heart Axis
Project description:Several aspects common to a Western lifestyle, including obesity and decreased physical activity, are known risks for gastrointestinal cancers. There is an increasing amount of evidence suggesting that diet profoundly affects the composition of the intestinal microbiota. Moreover, there is now unequivocal evidence linking a dysbiotic gut to cancer development. Yet, the mechanisms through which high-fat diet (HFD)-mediated changes in the microbial community impact the severity of tumorigenesis in the gut, remain to be determined. Here we demonstrate that HFD promotes tumor progression in the small intestine of genetically susceptible K-rasG12Dint mice independent of obesity. HFD consumption in conjunction with K-Ras mutation mediates a shift in the composition of gut microbiota, which is associated with a decrease in Paneth cell antimicrobial host defense that compromises dendritic cell (DC) recruitment and MHC-II presentation in the gut-associated lymphoid tissues (GALTs). DC recruitment in GALTs can be normalized, and tumor progression attenuated completely, when K-rasG12Dint mice are supplemented with the short-chain fatty acid butyrate, a bacterial fermentation endproduct. Importantly, Myd88-deficiency completely blocks tumor progression in K-rasG12Dint mice. Transfer of fecal samples from diseased donors into healthy adult K-rasG12Dint mice is sufficient to transmit disease in the absence of HFD. Furthermore, treatment with antibiotics completely blocks HFD-induced tumor progression, suggesting a pivotal role for distinct microbial shifts in aggravating disease in the small intestine. Collectively, these data underscore the importance of the reciprocal interaction between host and environmental factors in selecting intestinal microbiota that favor carcinogenesis, and suggest tumorigenesis may be transmissible among genetically predisposed individuals. 3 mice each for each treatment.
Project description:Intracerebral hemorrhage (ICH) induces alterations in the gut microbiota composition, significantly impacting neuroinflammation post-ICH. However, the impact of gut microbiota absence on neuroinflammation following ICH-induced brain injury remain unexplored. Here, we observed that the gut microbiota absence was associated with reduced neuroinflammation, alleviated neurological dysfunction, and mitigated gut barrier dysfunction post-ICH. In contrast, recolonization of microbiota from ICH-induced SPF mice by transplantation of fecal microbiota (FMT) exacerbated brain injury and gut impairment post-ICH. Additionally, microglia with transcriptional changes mediated the protective effects of gut microbiota absence on brain injury, with Apoe emerging as a hub gene. Subsequently, Apoe deficiency in peri-hematomal microglia was associated with improved brain injury. Finally, we revealed that gut microbiota influence brain injury and gut impairment via gut-derived short-chain fatty acids (SCFA).