Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.
Project description:The purpose of this study is to analyze maize shoots growth under negative pressure to stabilize soil water content,Maize plants were subjected to two irrigation treatments. The first treatment was soil moisture dry-wet cycles, which was obtained using drip irrigation (control, DW). The second treatment was negative pressure to stabilize soil water content treatment (SW), which was obtained using the negative pressure irrigation (NPI) system.
Project description:Intercropping is a vital technology in resource-limited agricultural systems with low inputs. Peanut/maize intercropping enhances iron (Fe) nutrition in calcareous soil. Proteomic studies of the differences in peanut leaves, maize leaves and maize roots between intercropping and monocropping systems indicated that peanut/maize intercropping not only improves Fe availability in the rhizosphere but also influences the levels of proteins related to carbon and nitrogen metabolism. Moreover, intercropping may enhance stress resistance in the peanut plant (Xiong et al. 2013b). Although the mechanism and molecular ecological significance of peanut/maize intercropping have been investigated, little is known about the genes and/or gene products in peanut and maize roots that mediate the benefits of intercropping. In the present study, we investigated the transcriptomes of maize roots grown in intercropping and monocropping systems by microarray analysis. The results enabled exploration differentially expressed genes in intercropped maize. Peanut (Arachis hypogaea L. cv. Luhua14) and maize (Zea mays L. cv. Nongda108) seeds were grown in calcareous sandy soil in a greenhouse. The soil was enhanced with basal fertilizers [composition (mg·kg−1 soil): N, 100 (Ca (NO3)2·4H2O); P, 150 (KH2PO4); K, 100 (KCl); Mg, 50 (MgSO4·7H2O); Cu, 5 (CuSO4·5H2O); and Zn, 5 (ZnSO4·7H2O)]. The experiment consisted of three cropping treatments: peanut monocropping, maize monocropping and intercropping of peanut and maize. After germination of peanut for 10 days, maize was sown. Maize samples were harvested after 63 days of growth of peanut plants based on the degree of Fe chlorosis in the leaves of monocropped peanut. The leaves of monocropped peanut plants exhibited symptoms of Fe-deficiency chlorosis at 63 days, while the leaves of peanut plants intercropped with maize maintained a green color.
2017-01-24 | GSE93771 | GEO
Project description:Metagenome of wheat rhizospheric soil