Project description:Low-grade inflammation is a hallmark of old age and a central driver of ageing-associated impairment and disease. Multiple factors can contribute to ageing-associated inflammation, however the molecular pathways transducing aberrant inflammatory signalling and their impact in natural ageing remain poorly understood. Here we show that the cGAS-STING signalling pathway, mediating immune sensing of DNA, is a critical driver of chronic inflammation and functional decline during ageing. Blockade of STING suppresses the inflammatory phenotypes of senescent human cells and tissues, attenuates ageing-related inflammation in multiple peripheral organs and the brain in mice, and leads to an improvement in tissue function. Focusing on the ageing brain, we reveal that activation of STING triggers reactive microglia transcriptional states, neurodegeneration and cognitive decline. Cytosolic DNA released from perturbed mitochondria elicits cGAS activity in old microglia defining a mechanism by which cGAS-STING signalling is engaged in the ageing brain. Single-nuclei RNA-sequencing (snRNA-seq) of microglia and hippocampi of a newly developed cGAS gain-of-function mouse model demonstrates that engagement of cGAS in microglia is sufficient to direct ageing-associated transcriptional microglia states leading to bystander cell inflammation, neurotoxicity and impaired memory capacity. Our findings establish the cGAS-STING pathway as a critical driver of ageing-related inflammation in peripheral organs and the brain, and reveal blockade of cGAS-STING signalling as a potential strategy to halt (neuro)degenerative processes during old age.
Project description:Low-grade inflammation is a hallmark of old age and a central driver of ageing-associated impairment and disease. Multiple factors can contribute to ageing-associated inflammation, however the molecular pathways transducing aberrant inflammatory signalling and their impact in natural ageing remain poorly understood. Here we show that the cGAS-STING signalling pathway, mediating immune sensing of DNA, is a critical driver of chronic inflammation and functional decline during ageing. Blockade of STING suppresses the inflammatory phenotypes of senescent human cells and tissues, attenuates ageing-related inflammation in multiple peripheral organs and the brain in mice, and leads to an improvement in tissue function. Focusing on the ageing brain, we reveal that activation of STING triggers reactive microglia transcriptional states, neurodegeneration and cognitive decline. Cytosolic DNA released from perturbed mitochondria elicits cGAS activity in old microglia defining a mechanism by which cGAS-STING signalling is engaged in the ageing brain. Single-nuclei RNA-sequencing (snRNA-seq) of microglia and hippocampi of a newly developed cGAS gain-of-function mouse model demonstrates that engagement of cGAS in microglia is sufficient to direct ageing-associated transcriptional microglia states leading to bystander cell inflammation, neurotoxicity and impaired memory capacity. Our findings establish the cGAS-STING pathway as a critical driver of ageing-related inflammation in peripheral organs and the brain, and reveal blockade of cGAS-STING signalling as a potential strategy to halt (neuro)degenerative processes during old age.
Project description:Low-grade inflammation is a hallmark of old age and a central driver of ageing-associated impairment and disease. Multiple factors can contribute to ageing-associated inflammation, however the molecular pathways transducing aberrant inflammatory signalling and their impact in natural ageing remain poorly understood. Here we show that the cGAS-STING signalling pathway, mediating immune sensing of DNA, is a critical driver of chronic inflammation and functional decline during ageing. Blockade of STING suppresses the inflammatory phenotypes of senescent human cells and tissues, attenuates ageing-related inflammation in multiple peripheral organs and the brain in mice, and leads to an improvement in tissue function. Focusing on the ageing brain, we reveal that activation of STING triggers reactive microglia transcriptional states, neurodegeneration and cognitive decline. Cytosolic DNA released from perturbed mitochondria elicits cGAS activity in old microglia defining a mechanism by which cGAS-STING signalling is engaged in the ageing brain. Single-nuclei RNA-sequencing (snRNA-seq) of microglia and hippocampi of a newly developed cGAS gain-of-function mouse model demonstrates that engagement of cGAS in microglia is sufficient to direct ageing-associated transcriptional microglia states leading to bystander cell inflammation, neurotoxicity and impaired memory capacity. Our findings establish the cGAS-STING pathway as a critical driver of ageing-related inflammation in peripheral organs and the brain, and reveal blockade of cGAS-STING signalling as a potential strategy to halt (neuro)degenerative processes during old age.
Project description:Low-grade inflammation is a hallmark of old age and a central driver of ageing-associated impairment and disease. Multiple factors can contribute to ageing-associated inflammation, however the molecular pathways transducing aberrant inflammatory signalling and their impact in natural ageing remain poorly understood. Here we show that the cGAS-STING signalling pathway, mediating immune sensing of DNA, is a critical driver of chronic inflammation and functional decline during ageing. Blockade of STING suppresses the inflammatory phenotypes of senescent human cells and tissues, attenuates ageing-related inflammation in multiple peripheral organs and the brain in mice, and leads to an improvement in tissue function. Focusing on the ageing brain, we reveal that activation of STING triggers reactive microglia transcriptional states, neurodegeneration and cognitive decline. Cytosolic DNA released from perturbed mitochondria elicits cGAS activity in old microglia defining a mechanism by which cGAS-STING signalling is engaged in the ageing brain. Single-nuclei RNA-sequencing (snRNA-seq) of microglia and hippocampi of a newly developed cGAS gain-of-function mouse model demonstrates that engagement of cGAS in microglia is sufficient to direct ageing-associated transcriptional microglia states leading to bystander cell inflammation, neurotoxicity and impaired memory capacity. Our findings establish the cGAS-STING pathway as a critical driver of ageing-related inflammation in peripheral organs and the brain, and reveal blockade of cGAS-STING signalling as a potential strategy to halt (neuro)degenerative processes during old age.
Project description:Stimulator of interferon genes (STING), the central hub protein of the cGAS-STING signaling, is essential for type I IFN production of innate immunity. However, prolonged or excessive activation of STING is highly related to autoimmune diseases, most of which exhibit the hallmark of elevated expression of type I interferons and IFN-stimulated genes (ISGs). Thus, the activity of STING must be stringently controlled to maintain immune homeostasis. Here, we reported that CK1α, a protein serine/threonine kinase, was essential to prevent the over-activation of STING-mediated type I IFN signaling through autophagic degradation of STING. Mechanistically, CK1α interacted with STING upon the cGAS-STING pathway activation and promoted STING autophagic degradation by enhancing the phosphorylation of p62 at serine 349, which was critical for p62 mediated STING autophagic degradation. Consistently, SSTC3, a selective CK1α agonist, significantly attenuated the response of the cGAS-STING signaling by promoting STING autophagic degradation. Importantly, pharmaceutical activation of CK1α using SSTC3 markedly repressed the systemic autoinflammatory responses in the Trex1-/- mouse autoimmune disease model and effectively suppressed the production of IFNs and ISGs in the PBMCs of SLE patients. Taken together, our study reveals a novel regulatory role of CK1α in the autophagic degradation of STING to maintain immune homeostasis. Manipulating CK1α through SSTC3 might be a potential therapeutic strategy for alleviating STING-mediated aberrant type I IFNs in autoimmune diseases.