ABSTRACT: The changes of microbial community of anode carbon brush in microbial electrolytic cell under different applied voltages were studied Genome sequencing and assembly
Project description:Investigation of whole genome gene expression level changes in a Shewanella oneidensis MR-1 to Fe nanoparticle decorated anodes, compared to the carbon plate anodes in microbial electrolysis cells. Whole genome microarray analysis of the gene expression showed that the encoding biofilm formation genes were significantly up-regulated as response to nanoparticle decorated anodes which indicated thickness improvements contributed to enhance current density. The increased expression genes related to nanowire, flavins and c-type cytochromes also have partially contributed to enhance current density by Fe nanoparticle decorated anode. The majority of additional differentially expressed genes associated with electron transport, anaerobic metabolism in response to the nanostructured anodes possibly play roles in current density enhancement. A six chip study using total RNA recovered from three separate replicates of biofilm on Fe Nanoparticle decorated anode of Shewanella oneidensis MR-1 and three separate replicates of carbon plate control. Each chip measures the expression level of 4,295 genes .
Project description:Improved performance of microbial electrolysis desalination and chemical-production cell with scaled-up anode and high applied voltages
Project description:Investigation of whole genome gene expression level changes in a Shewanella oneidensis MR-1 to Fe nanoparticle decorated anodes, compared to the carbon plate anodes in microbial electrolysis cells. Whole genome microarray analysis of the gene expression showed that the encoding biofilm formation genes were significantly up-regulated as response to nanoparticle decorated anodes which indicated thickness improvements contributed to enhance current density. The increased expression genes related to nanowire, flavins and c-type cytochromes also have partially contributed to enhance current density by Fe nanoparticle decorated anode. The majority of additional differentially expressed genes associated with electron transport, anaerobic metabolism in response to the nanostructured anodes possibly play roles in current density enhancement.
Project description:Microtoming Coupled with Microarray Analysis to Evaluate Potential Differences in the Metabolic Status of Geobacter sulfurreducens at Different Depths in Anode Biofilms Differences in the Metabolic Status of Geobacter sulfurreducens at Different Depths in A Current Producing Biofilm Further insight into the metabolic status of cells within anode biofilms is essential for understanding the functioning of microbial fuel cells and developing strategies to optimize their power output. In order to further compare the metabolic status of cells growing close to the anode versus cells in the outer portion of the anode biofilm, mature anode biofilms were treated to stop turnover over of mRNA and then encased in resin which was sectioned into 100 nm shavings with a diamond knife and pooled into inner (0-20 µm from anode surface) and outer (30-60 µm) fractions. Whole genome DNA microarray analysis of RNA extracted from the shavings revealed that, at a 2-fold lower threshold, there were 146 genes that had significant (p<0.05), differences in transcript abundance between the inner and outer portions of the biofilm. Only 1 gene, GSU0093, a hypothetical ABC transporter, had significantly higher transcript abundances in the outer biofilm. Genes with lower transcript abundance in the outer biofilm included genes for ribosomal proteins and NADH dehydrogenase, suggesting that cells in the outer biofilm had lower metabolic rates. However, the differences in transcript abundance were relatively low (<3-fold) and the outer biofilm did not have significantly lower expression of the genes for TCA cycle enzymes which previous studies have demonstrated are sensitive indicators of changes in rates of metabolism in G. sulfurreducens. There also was no significant difference in the transcript levels for outer-surface cell components thought to be important in electron transfer in anode biofilms. Lower expression of genes involved in stress responses in the outer biofilm may reflect the development of low pH near the surface of the anode. The results of the metabolic staining and gene expression studies suggest that cells throughout the biofilm are metabolically active and can potentially contribute to current production. The microtoming/microarray strategy described here may be useful for evaluating gene expression with depth in a diversity of microbial biofilms.
Project description:Microtoming Coupled with Microarray Analysis to Evaluate Potential Differences in the Metabolic Status of Geobacter sulfurreducens at Different Depths in Anode Biofilms Differences in the Metabolic Status of Geobacter sulfurreducens at Different Depths in A Current Producing Biofilm Further insight into the metabolic status of cells within anode biofilms is essential for understanding the functioning of microbial fuel cells and developing strategies to optimize their power output. In order to further compare the metabolic status of cells growing close to the anode versus cells in the outer portion of the anode biofilm, mature anode biofilms were treated to stop turnover over of mRNA and then encased in resin which was sectioned into 100 nm shavings with a diamond knife and pooled into inner (0-20 µm from anode surface) and outer (30-60 µm) fractions. Whole genome DNA microarray analysis of RNA extracted from the shavings revealed that, at a 2-fold lower threshold, there were 146 genes that had significant (p<0.05), differences in transcript abundance between the inner and outer portions of the biofilm. Only 1 gene, GSU0093, a hypothetical ABC transporter, had significantly higher transcript abundances in the outer biofilm. Genes with lower transcript abundance in the outer biofilm included genes for ribosomal proteins and NADH dehydrogenase, suggesting that cells in the outer biofilm had lower metabolic rates. However, the differences in transcript abundance were relatively low (<3-fold) and the outer biofilm did not have significantly lower expression of the genes for TCA cycle enzymes which previous studies have demonstrated are sensitive indicators of changes in rates of metabolism in G. sulfurreducens. There also was no significant difference in the transcript levels for outer-surface cell components thought to be important in electron transfer in anode biofilms. Lower expression of genes involved in stress responses in the outer biofilm may reflect the development of low pH near the surface of the anode. The results of the metabolic staining and gene expression studies suggest that cells throughout the biofilm are metabolically active and can potentially contribute to current production. The microtoming/microarray strategy described here may be useful for evaluating gene expression with depth in a diversity of microbial biofilms. Three biological replicates were hybridized in triplicate on a coustom affimetrix tilling array using prokaryotic protocol (p69Affy, p75 Adobe) for labeling, hybridization and scanning.
Project description:The response of soil microbial community to climate warming through both function shift and composition reorganization may profoundly influence global nutrient cycles, leading to potential significant carbon release from the terrain to the atmosphere. Despite the observed carbon flux change in northern permafrost, it remains unclear how soil microbial community contributes to this ecosystem alteration. Here, we applied microarray-based GeoChip 4.0 to investigate the functional and compositional response of subsurface (15~25cm) soil microbial community under about one year’s artificial heating (+2°C) in the Carbon in Permafrost Experimental Heating Research site on Alaska’s moist acidic tundra. Statistical analyses of GeoChip signal intensities showed significant microbial function shift in AK samples. Detrended correspondence analysis and dissimilarity tests (MRPP and ANOSIM) indicated significant functional structure difference between the warmed and the control communities. ANOVA revealed that 60% of the 70 detected individual genes in carbon, nitrogen, phosphorous and sulfur cyclings were substantially increased (p<0.05) by heating. 18 out of 33 detected carbon degradation genes were more abundant in warming samples in AK site, regardless of the discrepancy of labile or recalcitrant C, indicating a high temperature sensitivity of carbon degradation genes in rich carbon pool environment. These results demonstrated a rapid response of northern permafrost soil microbial community to warming. Considering the large carbon storage in northern permafrost region, microbial activity in this region may cause dramatic positive feedback to climate change, which is important and necessary to be integrated into climate change models.
2016-02-22 | GSE77866 | GEO
Project description:Analysis of the removal efficiency and mechanism of polycyclic aromatic hydrocarbons in soil microbial electrolyzers under different applied voltages
Project description:To study whether and how soil nitrogen conditions affect the ecological effects of long-term elevated CO2 on microbial community and soil ecoprocess, here we investigated soil microbial community in a grassland ecosystem subjected to ambient CO2 (aCO2, 368 ppm), elevated CO2 (eCO2, 560 ppm), ambient nitrogen deposition (aN) or elevated nitrogen deposition (eN) treatments for a decade. Under the aN condition, a majority of microbial function genes, as measured by GeoChip 4.0, were increased in relative abundance or remained unchanged by eCO2. Under the eN condition, most of functional genes associated with carbon, nitrogen and sulfur cycling, energy processes, organic remediation and stress responses were decreased or remained unchanged by eCO2, while genes associated with antibiotics and metal resistance were increased. The eCO2 effects on fungi and archaea were largely similar under both nitrogen conditions, but differed substantially for bacteria. Coupling of microbial carbon or nitrogen cycling genes, represented by positive percentage and density of gene interaction in association networks, was higher under the aN condition. In accordance, changes of soil CO2 flux, net N mineralization, ammonification and nitrification was higher under the aN condition. Collectively, these results demonstrated that eCO2 effects are contingent on nitrogen conditions, underscoring the difficulty toward predictive modeling of soil ecosystem and ecoprocesses under future climate scenarios and necessitating more detailed studies. Fourty eight samples were collected for four different carbon and nitrogen treatment levels (aCaN,eCaN,aCeN and eCeN) ; Twelve replicates in every elevation