Project description:The dynamic balance between tRNA supply and codon usage demand is a fundamental principle in the cellular translation economy. However, the regulation and functional consequences of this balance remain unclear. Here, we use PARIS2 interactome capture, structure modeling, conservation analysis, RNA–protein interaction analysis, and modification mapping to reveal the targets of hundreds of snoRNAs, many of which were previously considered orphans. We identify a snoRNA–tRNA interaction network that is required for global tRNA modifications, including 2′-O-methylation and others. Loss of Fibrillarin, the snoRNA-guided 2′-O-methyltransferase, induces global upregulation of tRNA fragments, a large group of regulatory RNAs. In particular, the snoRNAs D97/D133 guide the 2′-O-methylation of multiple tRNAs, especially for the amino acid methionine (Met), a protein-intrinsic antioxidant. Loss of D97/D133 snoRNAs in human HEK293 cells reduced target tRNA levels and induced codon adaptation of the transcriptome and translatome. Both D97/D133 single and double knockouts in HEK293 cells suppress Met-enriched proliferation-related gene expression programs, including, translation, splicing, and mitochondrial energy metabolism, and promote Met-depleted programs related to development, differentiation, and morphogenesis. In a mouse embryonic stem cell model of development, knockdown and knockout of D97/D133 promote differentiation to mesoderm and endoderm fates, such as cardiomyocytes, without compromising pluripotency, consistent with the enhanced development-related gene expression programs in human cells. This work solves a decade-old mystery about orphan snoRNAs and reveals a function of snoRNAs in controlling the codon-biased dichotomous cellular states of proliferation and development.
Project description:The dynamic balance between tRNA supply and codon usage demand is a fundamental principle in the cellular translation economy. However, the regulation and functional consequences of this balance remain unclear. Here, we use PARIS2 interactome capture, structure modeling, conservation analysis, RNA–protein interaction analysis, and modification mapping to reveal the targets of hundreds of snoRNAs, many of which were previously considered orphans. We identify a snoRNA–tRNA interaction network that is required for global tRNA modifications, including 2′-O-methylation and others. Loss of Fibrillarin, the snoRNA-guided 2′-O-methyltransferase, induces global upregulation of tRNA fragments, a large group of regulatory RNAs. In particular, the snoRNAs D97/D133 guide the 2′-O-methylation of multiple tRNAs, especially for the amino acid methionine (Met), a protein-intrinsic antioxidant. Loss of D97/D133 snoRNAs in human HEK293 cells reduced target tRNA levels and induced codon adaptation of the transcriptome and translatome. Both D97/D133 single and double knockouts in HEK293 cells suppress Met-enriched proliferation-related gene expression programs, including, translation, splicing, and mitochondrial energy metabolism, and promote Met-depleted programs related to development, differentiation, and morphogenesis. In a mouse embryonic stem cell model of development, knockdown and knockout of D97/D133 promote differentiation to mesoderm and endoderm fates, such as cardiomyocytes, without compromising pluripotency, consistent with the enhanced development-related gene expression programs in human cells. This work solves a decade-old mystery about orphan snoRNAs and reveals a function of snoRNAs in controlling the codon-biased dichotomous cellular states of proliferation and development.
Project description:The dynamic balance between tRNA supply and codon usage demand is a fundamental principle in the cellular translation economy. However, the regulation and functional consequences of this balance remain unclear. Here, we use PARIS2 interactome capture, structure modeling, conservation analysis, RNA–protein interaction analysis, and modification mapping to reveal the targets of hundreds of snoRNAs, many of which were previously considered orphans. We identify a snoRNA–tRNA interaction network that is required for global tRNA modifications, including 2′-O-methylation and others. Loss of Fibrillarin, the snoRNA-guided 2′-O-methyltransferase, induces global upregulation of tRNA fragments, a large group of regulatory RNAs. In particular, the snoRNAs D97/D133 guide the 2′-O-methylation of multiple tRNAs, especially for the amino acid methionine (Met), a protein-intrinsic antioxidant. Loss of D97/D133 snoRNAs in human HEK293 cells reduced target tRNA levels and induced codon adaptation of the transcriptome and translatome. Both D97/D133 single and double knockouts in HEK293 cells suppress Met-enriched proliferation-related gene expression programs, including, translation, splicing, and mitochondrial energy metabolism, and promote Met-depleted programs related to development, differentiation, and morphogenesis. In a mouse embryonic stem cell model of development, knockdown and knockout of D97/D133 promote differentiation to mesoderm and endoderm fates, such as cardiomyocytes, without compromising pluripotency, consistent with the enhanced development-related gene expression programs in human cells. This work solves a decade-old mystery about orphan snoRNAs and reveals a function of snoRNAs in controlling the codon-biased dichotomous cellular states of proliferation and development.
Project description:The dynamic balance between tRNA supply and codon usage demand is a fundamental principle in the cellular translation economy. However, the regulation and functional consequences of this balance remain unclear. Here, we use PARIS2 interactome capture, structure modeling, conservation analysis, RNA–protein interaction analysis, and modification mapping to reveal the targets of hundreds of snoRNAs, many of which were previously considered orphans. We identify a snoRNA–tRNA interaction network that is required for global tRNA modifications, including 2′-O-methylation and others. Loss of Fibrillarin, the snoRNA-guided 2′-O-methyltransferase, induces global upregulation of tRNA fragments, a large group of regulatory RNAs. In particular, the snoRNAs D97/D133 guide the 2′-O-methylation of multiple tRNAs, especially for the amino acid methionine (Met), a protein-intrinsic antioxidant. Loss of D97/D133 snoRNAs in human HEK293 cells reduced target tRNA levels and induced codon adaptation of the transcriptome and translatome. Both D97/D133 single and double knockouts in HEK293 cells suppress Met-enriched proliferation-related gene expression programs, including, translation, splicing, and mitochondrial energy metabolism, and promote Met-depleted programs related to development, differentiation, and morphogenesis. In a mouse embryonic stem cell model of development, knockdown and knockout of D97/D133 promote differentiation to mesoderm and endoderm fates, such as cardiomyocytes, without compromising pluripotency, consistent with the enhanced development-related gene expression programs in human cells. This work solves a decade-old mystery about orphan snoRNAs and reveals a function of snoRNAs in controlling the codon-biased dichotomous cellular states of proliferation and development.
Project description:The dynamic balance between tRNA supply and codon usage demand is a fundamental principle in the cellular translation economy. However, the regulation and functional consequences of this balance remain unclear. Here, we use PARIS2 interactome capture, structure modeling, conservation analysis, RNA-protein interaction analysis, and modification mapping to reveal the targets of hundreds of snoRNAs, many of which were previously considered orphans. We identify a snoRNA-tRNA interaction network that is required for global tRNA modifications, including 2'-O-methylation and others. Loss of Fibrillarin, the snoRNA-guided 2'-O-methyltransferase, induces global upregulation of tRNA fragments, a large group of regulatory RNAs. In particular, the snoRNAs D97/D133 guide the 2'-O-methylation of multiple tRNAs, especially for the amino acid methionine (Met), a protein-intrinsic antioxidant. Loss of D97/D133 snoRNAs in human HEK293 cells reduced target tRNA levels and induced codon adaptation of the transcriptome and translatome. Both single and double knockouts of D97 and D133 in HEK293 cells suppress Met-enriched proliferation-related gene expression programs, including, translation, splicing, and mitochondrial energy metabolism, and promote Met-depleted programs related to development, differentiation, and morphogenesis. In a mouse embryonic stem cell model of development, knockdown and knockout of D97/D133 promote differentiation to mesoderm and endoderm fates, such as cardiomyocytes, without compromising pluripotency, consistent with the enhanced development-related gene expression programs in human cells. This work solves a decades-old mystery about orphan snoRNAs and reveals a function of snoRNAs in controlling the codon-biased dichotomous cellular states of proliferation and development.
Project description:Protein translation depends on mRNA-specific initiation, elongation, and termination rates. While the regulation of ribosome elongation is well studied in bacteria and yeast, less is known in higher eukaryotes. Here, we combined ribosome and tRNA profiling to investigate the relations between ribosome elongation rates, (aminoacyl-) tRNA levels and codon usage in mammals. We modeled codon-specific ribosome dwell times and translation fluxes from ribosome profiling, considering pair-interactions between ribosome sites. In mouse liver, the model revealed site and codon specific dwell times, as well as codon pair-interactions clustering by amino acids. While translation fluxes varied significantly across diurnal time and feeding regimen, codon dwell times were highly stable, and conserved in human. Fasting had no effect on codon dwell times in mouse liver. Profiling of total and aminoacylated tRNAs revealed highly heterogeneous levels with specific isoacceptor patterns and a correlation with codon usage. tRNAs for isoleucine, asparagine, aspartate and arginine were lowly loaded and conserved in fasted mice. Finally, codons with low levels of charged tRNAs and high codon usage relative to tRNA abundance exhibited long dwell times. Together, these analyses pave the way towards understanding the complex relation between tRNA loading, codon usage and ribosome dwell times in mammals.