Project description:Exploring differentially expressed miRNAs (DEmiRNAs) in plasma sample between lung adenocarcinoma patients and healthy people using a small RNA (sRNA) sequencing,results showed that we could used these DEmiRNAs identified could discriminate healthy peoples from lung adenocarcinoma patients. In present study, we applied an RNA sequencing (RNA-seq) approach to explore the differentially expressed miRNAs (DEmiRNAs) in plasma sample between 6 lung adenocarcinoma patients and 4 healthy people.
Project description:Complex oligosaccharides found in human milk play a vital role in gut microbiome development for the human infant. Bovine milk oligosaccharides (BMO) have similar structures with those derived from human milk, but have not been well studied for their effects on the healthy adult human gut microbiome. Healthy human subjects consumed BMO over two-week periods at two different doses and provided fecal samples. Metatranscriptomics of fecal samples was conducted to determine microbial and host gene expression in response to the supplement. Fecal samples were also analyzed by mass spectrometry to determine levels of undigested BMO. No changes were observed in microbiome activity across all participants. Repeated sampling enabled subject-specific analyses: four of six participants had minor, yet statistically significant, changes in microbial activity. No significant change was observed in the gene expression of host cells in stool. Levels of BMO excreted in feces after supplementation were not significantly different from placebo and were not correlated with dosage or expressed microbial enzyme levels. Collectively, these data suggest that BMO is fully digested in the human gastrointestinal tract prior to stool collection. Participants’ gut microbiomes remained stable but varied between individuals. Additionally, the unaltered host transcriptome provides further evidence for the safety of BMO as a dietary supplement or food ingredient.
Project description:Some acetogenic bacteria, such as Eubacterium limosum, have the native ability to consume liquid C1 feedstocks, such as formate and methanol, as the sole substrate for growth. Due to high energy efficiency, and compatibility with existing infrastructure, this has sparked interest in the biotechnology industry. Previously, we reported limitations of this metabolism in batch fermentation. Here we undertook chemostat differential analysis to highlight key features and bottlenecks of metabolism. Our work serves as a reference dataset to advance understanding of liquid C1 metabolism in acetogens.
Project description:The genetics, social, cultural and environmental factors pose a great challenge for the diagnosis and treatment of coronary heart disease among different racial groups. We aimed to identify the differentially expressed genes involved in coronary heart disease in Chinese Han people as an aid for screening and diagnosing coronary heart disease. We used microarrays to detail the global programme of gene expression to identify the differentially gene between the patients with coronary heart disease and healthy people in Chinese Han people Three patients with coronary heart disease and three healthy people in Chinese Han people were recruited,total RNA of each samples were extracted from peripheral blood to hybridize with Affymetrix microarrays.
Project description:Immune activation in people living with HIV on anti-retroviral therapy is associated with increased risk of morbidity and mortality, but the underlying mechanisms are poorly understood. To identify whether perturbation of immunological pathways persist at systems level, we compared genome-wide whole blood transcriptomes from 26 people living with HIV on long-term anti-retroviral therapy with 12 HIV-negative healthy controls. All participants were Caucasian male adults recruited from London, UK. People living with HIV were on anti-retroviral therapy for a median of 8.5 years (interquartile range 3-16 years). They had undetectable plasma HIV viral load (<40 copies/ml) and median circulating CD4 counts of 703 cells/µl (interquartile range 491-841 cells/µl).