Project description:Many environmental, genetic, and epigenetic factors are known to affect the frequency and positioning of meiotic crossovers (COs). Suppression of COs by large, cytologically visible inversions and translocations has long been recognized, but relatively little is known about how smaller structural variants (SVs) affect COs. To examine fine-scale determinants of the CO landscape, including SVs, we used a rapid, cost-effective method for high-throughput sequencing to generate a precise map of over 17,000 COs between the Col-0 and Ler accessions of Arabidopsis thaliana. COs were generally suppressed in regions with SVs, but this effect did not depend on the size of the variant region, and was only marginally affected by the variant type. CO suppression did not extend far beyond the SV borders, and CO rates were slightly elevated in the flanking regions. Disease resistance gene clusters, which often exist as SVs, exhibited high CO rates at some loci, but there was a tendency toward depressed CO rates at loci where large structural differences exist between the two parents. Our high-density map also revealed in fine detail how CO positioning relates to genetic (DNA motifs) and epigenetic (chromatin structure) features of the genome. We conclude that suppression of COs occurs over a narrow region spanning large and small-scale SVs, representing influence on the CO landscape in addition to sequence and epigenetic variation along chromosomes.
Project description:Copy number variants (CNVs) represent a substantial source of genomic variation in vertebrates, but the zebrafish reference genome has no annotated CNV information. We developed a zebrafish CNV map using 80 zebrafish genomes from laboratory strains (AB, Tubingen, and WIK) and one native population, identifying 6,080 CNV elements. Overlapping or adjacent CNVs account for 14.6% of the genome, representing four times the CNV levels from other vertebrates including humans. Highest intra-specific CNV levels were observed for Tubingen, a common laboratory strain due to high fecundity. Tubingen variation likely represents higher initial population size and composite population founders initiating the laboratory strain. Extensive zebrafish CNVs, along with associated phenotypic impacts, advocates for increased usage of isogenic strains for genetic studies intended for human disease translation. 7 full sib adult hybrid fish used for expression Quantatitive Trait Loci (eQLT) analysis to support CNV affects on gene expresion in zebrafish.
Project description:Copy number variants (CNVs) represent a substantial source of genomic variation in vertebrates, but the zebrafish reference genome has no annotated CNV information. We developed a zebrafish CNV map using 80 zebrafish genomes from laboratory strains (AB, Tubingen, and WIK) and one native population, identifying 6,080 CNV elements. Overlapping or adjacent CNVs account for 14.6% of the genome, representing four times the CNV levels from other vertebrates including humans. Highest intra-specific CNV levels were observed for Tubingen, a common laboratory strain due to high fecundity. Tubingen variation likely represents higher initial population size and composite population founders initiating the laboratory strain. Extensive zebrafish CNVs, along with associated phenotypic impacts, advocates for increased usage of isogenic strains for genetic studies intended for human disease translation. 7 full sib adult hybrid fish used for expression Quantatitive Trait Loci (eQLT) analysis to support CNV affects on gene expresion in zebrafish.
Project description:Gene expression variation results from numerous sources including genetic, environmental, life stage, and even the environment experienced by previous generations. While the importance of each has been demonstrated in diverse organisms, their relative contributions remain understudied because few investigations have simultaneously determined each within a single experiment. Here we quantified genome-wide gene expression traits in Drosophila, quantified the contribution of multiple different sources of trait variation and determined the molecular mechanisms underlying observed variation. Our results show that there is a clear hierarchy in our data with genome and developmental stage contributing on average considerably more than current and finally previous generation environmental effects. We also determined the role of cis and trans-regulatory changes across different sources of trait variation, highlighting their importance in adaptation and environmental responses and showing unexpectedly that transgenerational effects herein were predominantly associated with changes in trans-regulation.
2024-11-07 | GSE280534 | GEO
Project description:metagenomic amplicon sequencing of NRPS and PKS domains along environmental gradients
Project description:Incomplete annotation of cell-to-cell state variation and widespread linkage disequilibrium in the human genome represent significant challenges to elucidating mechanisms of trait-associated genetic variation. Here, using data from the UK Biobank, we perform genetic fine-mapping for 16 blood cell traits to quantify posterior probabilities of association while allowing for multiple independent signals per region. We observe an enrichment of fine-mapped variants in genes encoding for trait-relevant biological pathways and in accessible chromatin of lineage-committed hematopoietic progenitor cells. For fine-mapped regulatory variants, we gain insights into patterns of developmental enhancer activity and identify putative molecular mechanisms, including several regulatory elements that contain independent functional variants, as well as target genes. Across diverse blood cell lineages, we observe 172 fine-mapped pleiotropic variants, finding that ~90% of these tune the production of distinct lineages in consistent directions, whereas ~10% favor the production of a single lineage at the expense of others. Finally, we develop a novel analytic framework that takes advantage of fine-mapping to identify “core gene” cell type enrichments and show that this approach uniquely resolves relevant cell types within closely related populations. Applying our approach to single cell chromatin accessibility data, we discover significant heterogeneity within classically defined multipotential progenitor populations. In total, our study provides an analytic framework for single-variant and single-cell analyses and represents one of the most comprehensive maps of variant to function to date.
Project description:Characterization of transcriptomic variation is emerging as a critical tool for understanding how quantitative trait loci (QTL) contribute to complex phenotypes. Human transcriptomic studies are limited by factors such as the feasibility of invasive tissue collection or variable environmental exposures that can be readily overcome in non-human primate (NHP) models. We characterized transcriptomic variation across multiple tissues and developmental stages and between individuals in 59 vervet monkeys from the Vervet Research Colony extended pedigree. We conducted RNA sequencing across early (7, 90 days, and one year) and later (1.25, 1.5, 1.75, 2, 2.5, 3, and 4+ years old) developmental time points in 6 individuals at each stage in five tissue types: two brain tissues from hippocampus and caudate, two endocrine tissues (pituitary and adrenal) and two peripheral tissues serving as a source of biomarkers (blood and fibroblasts)