Project description:The severe acute respiratory syndrome (SARS) epidemic was characterized by increased pathogenicity in the elderly due to an early exacerbated innate host response. SARS-CoV is a zoonotic pathogen that entered the human population through an intermediate host like the palm civet. To prevent future introductions of zoonotic SARS-CoV strains and subsequent transmission into the human population, heterologous disease models are needed to test the efficacy of vaccines and therapeutics against both late human and zoonotic isolates. Here we show that both human and zoonotic SARS-CoV strains can infect cynomolgus macaques and resulted in radiological as well as histopathological changes similar to those seen in mild human cases. Viral replication was higher in animals infected with a late human phase isolate compared to a zoonotic isolate. Host responses to the three SARS-CoV strains were similar and only apparent early during infection with the majority of genes associated with interferon signalling pathways.This study characterizes critical disease models in the evaluation and licensure of therapeutic strategies against SARS-CoV for human use 4 strains, time course, lungs
Project description:This submission contains datasets from several species used to demonstrate new features in compareMS2 2.0. Tandem mass spectrometry data from California sea lion, chimpanzee, dog, human, rock hyrax, and white-tailed deer sera were graciously provided with permission from an ongoing collaboration with Dr. Michael G. Janech (College of Charleston) as part of the CoMPARe Program (Comparative Mammalian Proteome Aggregator Resource). Specifically, the California sea lion sera were provided by The Marine Mammal Center (Sausalito, CA), the chimpanzee, rock hyrax, and white-tailed deer sera were provided by The Chattanooga Zoo, and the dog serum from Gus (Ohlandt Veterinary Clinic, Charleston, SC). In addition to institutional and NMFS permits and approval, data collection was performed under NIST ACUC MML-AR20-0001. The identification of certain commercial equipment, instruments, software, or materials does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products identified are necessarily the best available for the purpose.
Project description:Healthcare workers were recruited at St Bartholomew’s Hospital, London, UK in the week of lockdown in the United Kingdom (between 23rd and 31st March 2020). Participants underwent weekly evaluation using a questionnaire and biological sample collection (including serological assays) for up to 16 weeks when attending for work and self-declared as fit to attend work at each visit, with further follow up samples collected at 24 weeks. Blood RNA sequencing data was to be used to identify host-response biomarkers of early SARS-CoV-2 infection, to evaluate existing blood transcriptomic signatures of viral infection, and to describe the underlying biology during SARS-CoV-2 infection. This submission includes a total of 172 blood RNA samples from 99 participants. Of these, 114 samples (including 16 convalescent samples collected 6 months after infection) were obtained from 41 SARS-CoV-2 cases, with the remaining 58 from uninfected controls. Participants with available blood RNA samples who had PCR-confirmed SARS-CoV-2 infection during follow-up were included as ‘cases’. Those without evidence of SARS-CoV-2 infection on nasopharyngeal swabs and who remained seronegative by both Euroimmun anti S1 spike protein and Roche anti nucleocapsid protein throughout follow-up were included as uninfected controls. ‘Cases’ include all available RNA samples, including convalescent samples at week 24 of follow-up for a subset of participants. For uninfected controls, we included baseline samples only. Sample class denotes weekly interval to positive SARS-CoV-2 PCR; non-infected controls (NIC); convalescent samples (Conv)_.