Project description:We used microarray analysis to identify differences in gene expression levels in heart following an 18h (overnight) fast in WT control and KLF15-null mice
Project description:Introduction: microRNAs are promising candidate breast cancer biomarkers due to their cancer-specific expression profiles. However, efforts to develop circulating breast cancer biomarkers are challenged by the heterogeneity of microRNAs in the blood. To overcome this challenge, we aimed to develop a molecular profile of microRNAs specifically secreted from breast cancer cells. Our first step towards this direction relates to capturing and analyzing the contents of exosomes, which are small secretory vesicles that selectively encapsulate microRNAs indicative of their cell of origin. To our knowledge, circulating exosome microRNAs have not been well evaluated as biomarkers for breast cancer diagnosis or monitoring. Methods: Exosomes were collected from the conditioned media of human breast cancer cell lines, mouse plasma of patient-derived orthotopic xenograft models (PDX), and human plasma samples. Exosomes were verified by electron microscopy, nanoparticle tracking analysis, and western blot. Cellular and exosome microRNAs from breast cancer cell lines were profiled by next-generation small RNA sequencing. Plasma exosome microRNA expression was analyzed by qRT-PCR analysis. Results: Small RNA sequencing and qRT-PCR analysis showed that several microRNAs are selectively encapsulated or highly enriched in breast cancer exosomes. Importantly, the selectively enriched exosome microRNA, human miR-1246, was detected at significantly higher levels in exosomes isolated from PDX mouse plasma, indicating that tumor exosome microRNAs are released into the circulation and can serve as plasma biomarkers for breast cancer. This observation was extended to human plasma samples where miR-1246 and miR-21 were detected at significantly higher levels in the plasma exosomes of 16 breast cancer patients as compared to the plasma exosomes of healthy control subjects. Receiver Operating Characteristic (ROC) curve analysis indicated that the combination of plasma exosome miR-1246 and miR-21 levels is a better indicator of breast cancer than their individual levels. Conclusions: Our results demonstrate that certain microRNA species, such as miR-21 and miR-1246, are selectively enriched in human breast cancer exosomes and significantly elevated in the plasma of breast cancer patients. These findings indicate a potential new strategy to selectively analyze plasma breast cancer microRNAs indicative of the presence of breast cancer.
Project description:Objective: we aimed to identify circulating microRNAs associated with fast-progressing knee osteoarthritis (OA) as compared to slow-progressing knee OA and non-progressing knee OA using sujects from the Osteoarthritis Initiative (OAI) cohort. MicroRNA libraries were prepared from plasma using the QIAseq miRNA Library Kit (QIAGEN) and sequenced on the Illumina NextSeq550 using a single-end 75-base read protocol to an average depth of 11.6 ± 2.6 SD million reads per sample.
Project description:Gene expression was analyzed by gene array in liver RNA collected from 11-12 week old male IR floxed, LIRKO, IR/FoxO1 floxed and LIRFKO mice either a) following an overnight 24 hr fast, b) 60 min after dextrose (2 g/kg ip) was administered to overnight fasted mice, or c) 6 hr after fasted mice were allowed to refeed on standard chow.
Project description:Plasma samples from 100 early stage (I to IIIA) non–small-cell lung cancer (NSCLC) patients and 100 non-cancer controls were screened for 754 circulating microRNAs via qRT-PCR, using TaqMan MicroRNA Arrays. Our objective was to identify a panel of circulating microRNAs in plasma that will contribute to early detection of lung cancer.
Project description:We tested the hypothesis that circulating microRNAs (miRNAs) present in plasma might display a specific signature in patients with intracerebral hemorrhage (ICH). Global miRNA profiles were determined with the Agilent Human miRNA Microarray platform, 027233. ICH patients display a characteristic inflammation-related miRNA profile as compared to healthy controls. Plasma samples were collected from the following 6 subject groups: male ICH patients (n=8), female ICH patients (n=7), male healthy control (n=4), female healthy control (n=4), male ischemic stroke patients (n=8) and female ischemic stroke patients (n=8). Total RNAs isolated from 1 ml plasma were pooled for each group. A fixed volume of RNA sample was withdrawn from each pool and used for microarray detection.
Project description:RNA-protein interactions are central to biological regulation. Cross-linking immunoprecipitation (CLIP)-seq is a powerful tool for genome-wide interrogation of RNA-protein interactomes, but current CLIP methods are limited by challenging biochemical steps and fail to detect many classes of noncoding and non-human RNAs. Here we present FAST-iCLIP, an integrated pipeline with improved CLIP biochemistry and an automated informatic pipeline for comprehensive analysis across protein coding, noncoding, repetitive, retroviral, and non-human transcriptomes. FAST-iCLIP of Poly-C binding protein 2 (PCBP2) showed that PCBP2 bound CU-rich motifs in different topologies to recognize mRNAs and noncoding RNAs with distinct biological functions. FAST-iCLIP of PCBP2 in hepatitis C virus-infected cells enabled a joint analysis of the PCBP2 interactome with host and viral RNAs and their interplay. These results show that FAST-iCLIP can be used to rapidly discover and decipher mechanisms of RNA-protein recognition across the diversity of human and pathogen RNAs. Characterization of non-coding and pathogen RNA-protein interactions using an automated computational pipeline and improved iCLIP biochemistry
Project description:Pre-analytic factors have a significant influence on circulating miRNA profiling. The aim of this study was the comprehensive NGS-based assessment of the impact of anticoagulant type in blood collection tubes on circulating plasma miRNA profiles.