Project description:Pancreatic β-cell failure induced by WFS1 deficiency is manifested in wolfram syndrome (WS). The lack of a suitable human model in WS has hampered the progress in developing new treatments. Here, human pluripotent stem cell derived pancreatic β cells (SC-β cells) harboring WFS1-deficiency and mouse model of β cell-specific Wfs1 knockout were applied to model β-cell failure in WS. Single-cell RNA sequencing of WFS1-deficient SC-β cells revealed two cell fates along pseudotime trajectory including maturation and stress branch. WFS1 deficiency blocked β-cell fate trajectory to maturation but pushed it towards stress trajectory leading to β-cell failure.
Project description:Wolfram syndrome is a rare genetic disorder largely caused by pathogenic variants in the WFS1 gene and manifested by diabetes mellitus, optic nerve atrophy, and progressive neurodegeneration. Recent genetic and clinical findings have revealed Wolfram syndrome as a spectrum disorder. Therefore, a genotype-phenotype correlation analysis is needed for diagnosis and therapeutic development. Here, we focus on the WFS1 c.1672C>T, p.R558C variant which is highly prevalent in the Ashkenazi-Jewish population. Clinical investigation indicates that subjects carrying the homozygous WFS1 c.1672C>T, p.R558C variant show mild forms of Wolfram syndrome phenotypes. Expression of WFS1 p.R558C is more stable compared to the other known recessive pathogenic variants associated with Wolfram syndrome. Human induced pluripotent stem cell (iPSC)-derived islets (SC-islets) homozygous for WFS1 c.1672C>T variant recapitulate genotype-related Wolfram syndrome phenotypes. Enhancing residual WFS1 function by a combination treatment of chemical chaperones mitigates detrimental effects caused by the WFS1 c.1672C>T, p.R558C variant and increases insulin secretion in SC-islets. Thus, the WFS1 c.1672C>T, p.R558C variant causes a mild form of Wolfram syndrome phenotypes, which can be remitted with a combination treatment of chemical chaperones. We demonstrate that our patient iPSC-derived disease model provides a valuable platform for further genotype-phenotype analysis and therapeutic development for Wolfram syndrome.
Project description:Despite some success of pharmacotherapies targeting primarily neurohormonal dysregulation, heart failure is a growing global pandemic with increasing burden. Treatments that improve the disease by reversing heart failure at the cardiomyocyte level are lacking. MicroRNAs (miRNA) are transcriptional regulators of gene expression, acting through complex biological networks, and playing thereby essential roles in disease progression. Adverse structural remodelling of the left ventricle due to myocardial infarction (MI) is a common pathological feature leading to heart failure. We previously demonstrated increased cardiomyocyte expression of the miR-212/132 family during pathological cardiac conditions. Transgenic mice overexpressing the miR-212/132 cluster (miR-212/132-TG) develop pathological cardiac remodelling and die prematurely from progressive HF. Using both knockout and antisense strategies, we have shown miR-132 to be both necessary and sufficient to drive the pathological growth of cardiomyocytes in a murine model of left ventricular pressure overload. Based on the findings, we proposed that miR-132 may serve as a therapeutic target in heart failure therapy. Here we provide novel mechanistic insight and translational evidence for the therapeutic efficacy in small and large animal models (n=135) of heart failure. We demonstrate strong PK/PD relationship, dose-dependent efficacy and high clinical potential of a novel optimized synthetic locked nucleic acid phosphorothioate backbone antisense oligonucleotide inhibitor of miR-132 (antimiR-132) as a next-generation heart failure therapeutic.
Project description:Type 2 diabetes is associated with defective insulin secretion and reduced β-cell mass. Available treatments provide a temporary reprieve, but secondary failure rates are high, making insulin supplementation necessary. Reversibility of b-cell failure is a key translational question. Here, we reverse-engineered and interrogated pancreatic islet-specific regulatory networks to discover T2D-specific subpopulations characterized by metabolic-inflexibility and endocrine-progenitor/stem cell features. Single-cell gain- and loss-of-function and glucose-induced Ca++ flux analyses of top candidate MR in islet cells validated transcription factor BACH2 and associated epigenetic effectors as a key driver of T2D cell states. BACH2 knockout in T2D islets reversed cellular features of the disease, restoring a non-diabetic phenotype. BACH2-immunoreactive islet cells increased ~4-fold in diabetic patients, confirming the algorithmic prediction of clinically relevant subpopulations. Treatment with a BACH inhibitor lowered glycemia and increased plasma insulin levels in diabetic mice, and restored insulin secretion in diabetic mice and human islets. The findings suggest that T2D-specific populations of failing b-cells can be reversed and indicate pathways for pharmacological intervention, including via BACH2 inhibition.
Project description:Developmental alteration in brain wiring that would make it more susceptible to later pathological processes has been suggested as a basis for the occurrence of neurodegenerative diseases, but mechanisms have remained elusive. A recent series of magnetic resonance imaging studies have demonstrated that, in Wolfram syndrome, neurodegenerative processes appear during childhood and adolescence on top of a clinically silent global defect in brain development. Here, differentiation of induced pluripotent stem cell lines derived from Wolfram syndrome patients’ cells along the neural lineage has revealed phenotypic and molecular correlates of that global brain defect. A proportion of neural cells displayed aberrant neurite outgrowth associated with alterations in the expression of genes involved in axonal guidance. In contrast, an activation of endoplasmic reticulum stress response genes was absent while it is present in late Wolfram syndrome degenerative processes. These results concur to the broader hypothesis that axon guidance genes may play a role in the susceptibility to neurodegenerative diseases.
Project description:Studies of miRNA profiling in the plasma of patients between ISR and non-ISR Venous blood was collected in EDTA in the ward or the cardiac catheterization laboratory before the angiography procedure and heparin administration. Plasma was harvested by centrifugation and stored at -80°C until assayed. Identical volumes of plasma from the 6 patients with ISR and 4 patients with non-ISR were pooled to reach a final volume of 1500µL for each patient. Total RNA was extracted using miRVana isolation kit, dephosphorylated and labeled using miRNA Complete Labeling kit. Scanning was achieved with the illumina iScan System. The result were acquired with the Genome Studio (GenomeStudioV2009.1).
Project description:In response to different cellular stressors, the ISR kinases, PERK, PKR, HRI and GCN2, activate downstream transcriptional programs. While the core ISR transcription program is well characterized, markers that are specific to each individual ISR kinase activation pathway are not known. To identify markers that are induced by PERK or GCN2, but not the other ISR kinases, we subjected WT, GCN2-/-, and PERK-/- MEFs to amino acid starvation (RPMI 1640 SILAC -Lys -Arg) or Thapsigargin (200nM) treatment for 6 hours to activate the GCN2 and PERK pathways, respectively and performed RNA sequencing.
Project description:We revealed transcriptome differences between corrected and unedited (diseased) Wolfram Syndrome patient stem cell-derived beta cells. We also identified several endocrine, pancreatic, and non-pancreatic cell types in the samples populations.