Project description:This study investigates host-specific gene expression of the Pacific salmon lice, Lepeophtheirus salmonis oncorhynchii, while parasitizing a resistant host (Coho salmon), two susceptible hosts (Atlantic salmon, Sockeye salmon), and a population with-held hosts (starved), over 48 hrs.
2017-01-25 | GSE80220 | GEO
Project description:Hatchery and Wild Coho Within Generation Selection
Project description:The influence of GH transgenesis on liver gene expression in coho salmon was examined. Gene expression in livers of transgenic salmon on a restricted ration (R) was compared to that in livers of nontransgenic control salmon (C). Keywords: Transcript profile
Project description:Background: Salmonid species have followed markedly divergent evolutionary trajectories in their interactions with sea lice. While sea lice parasitism poses significant economic, environmental, and animal welfare challenges for Atlantic salmon (Salmo salar) aquaculture, coho salmon (Oncorhynchus kisutch) exhibit near-complete resistance to sea lice, achieved through a potent epithelial hyperplasia response leading to rapid louse detachment. The molecular mechanisms underlying these divergent responses to sea lice are unknown. Results: We characterised the cellular and molecular responses of Atlantic salmon and coho salmon to sea lice using single-nuclei RNA sequencing. Juvenile fish were exposed to copepodid sea lice (Lepeophtheirus salmonis), and lice-attached pelvic fin and skin samples were collected 12h, 24h, 36h, 48h, and 60h after exposure, along with control samples. Comparative analysis of control and treatment samples revealed an immune and wound-healing response that was common to both species, but attenuated in Atlantic salmon, potentially reflecting greater sea louse immunomodulation. Our results revealed unique but complementary roles of three layers of keratinocytes in the epithelial hyperplasia response leading to rapid sea lice rejection in coho salmon. Our results suggest that basal keratinocytes direct the expansion and mobility of intermediate and, especially, superficial keratinocytes, which eventually encapsulate the parasite. Conclusions: Our results highlight the key role of keratinocytes in coho salmon’s sea lice resistance, and the diverged biological response of the two salmonid host species when interacting with this parasite. This study has identified key pathways and candidate genes that could be manipulated using various biotechnological solutions to improve Atlantic salmon sea lice resistance.
Project description:Captive rearing programs (hatcheries) are often used in conservation and management efforts for at-risk salmonid fish populations. However, hatcheries typically rear juveniles in environments that contrast starkly with natural conditions, which may lead to phenotypic and/or genetic changes that adversely affect the performance of juveniles upon their release to the wild. Environmental enrichment has been proposed as a mechanism to improve the efficacy of population restoration efforts from captive-rearing programs: in this study, we examine the influence of environmental enrichment during embryo and yolk-sac larval rearing at the level of the transcriptome in Atlantic salmon (Salmo salar). Full siblings were reared in either a M-bM-^@M-^\simpleM-bM-^@M-^] environment devoid of structure or a M-bM-^@M-^\complexM-bM-^@M-^] environment enriched with gravel substrate. At the end of endogenous feeding by juveniles, we examined patterns of gene transcription in head tissues using the cGRASP-designed Agilent 4M-CM-^W44K microarray. Significance analysis of microarrays (SAM) indicated that 808 genes were differentially transcribed between rearing environments and a total of 184 gene ontological (GO) terms were over- or under-represented, several of which are associated with mitosis/cell cycle and muscle and heart development. However, there were also pronounced differences among families in gene transcriptional response to rearing environment, with the number of genes significantly differentially transcribed by juveniles in our independent analyses of each family ranging from zero to 3445 (FDR of 5%). Overall, our results suggest that rearing environment enrichment can profoundly change patterns of gene transcription during salmon development, but that the degree of response depends on genetic background. This was a two-condition experiment in which a total of 30 RNA samples isolated from the heads of developing salmon were analysed: 15 juveniles reared in a traditional hatchery environment and 15 reared in a hatchery environment enriched with gravel substrate.
Project description:We investigated whether exposure to a captive environment during maturation influenced gamete DNA methylation for wild Atlantic Salmon individuals. We then investigated whether these parental effects were detectable in an F1 generation reared in a common environment. We associated DNA methylation with growth and fitness-related phenotypes and demonstrated that intergenerational effects of hatchery exposure during maturation of the parental generation influence fitness-related methylation patterns in the F1 generation.
Project description:The study was designed to investigate the impacts of hatchery spawning and rearing on steelhead trout (Oncorhynchus mykiss) versus the wild fish on a molecular level. Additionally, epigenetic differences between feeding practices that allow slow growth and fast growth hatchery trout were investigated. The sperm and RBC DNA both had a large number of DMRs when comparing the hatchery versus wild steelhead trout populations. Interestingly, the DMRs were cell type specific with negligible overlap. Slow growth compared to fast growth steelhead also had a larger number of DMRs in the RBC samples. Observations demonstrate a major epigenetic programming difference between the hatchery and wild fish populations, but negligible genetic differences. Therefore, hatchery conditions and growth rate can alter the epigenetic developmental programming of the steelhead trout, which may correlate to the phenotypic variations observed.