Project description:The pathogenesis of acne has been linked to multiple factors such as increased sebum production, inflammation, follicular hyperkeratinization, and the action of Propionibacterium acnes within the follicle. In an attempt to understand the specific genes involved in inflammatory acne, we performed gene expression profiling in acne patients. Skin biopsies were obtained from an inflammatory papule and from normal skin in six patients with acne. Biopsies were also taken from normal skin of six subjects without acne. Gene array expression profiling was conducted using Affymetrix HG-U133A 2.0 arrays comparing lesional to nonlesional skin in acne patients and comparing nonlesional skin from acne patients to skin from normal subjects. Within the acne patients, 211 genes are upregulated in lesional skin compared to nonlesional skin. A significant proportion of these genes are involved in pathways that regulate inflammation and extracellular matrix remodeling, and they include matrix metalloproteinases 1 and 3, IL-8, human beta-defensin 4, and granzyme B. These data indicate a prominent role of matrix metalloproteinases, inflammatory cytokines, and antimicrobial peptides in acne lesions. These studies are the first describing the comprehensive changes in gene expression in inflammatory acne lesions and are valuable in identifying potential therapeutic targets in inflammatory acne. Experiment Overall Design: total 18 chips. 6 for acne lesion samples, 6 for normal skin samples, 6 for non-acne patient normal skin samples
Project description:The pathogenesis of acne has been linked to multiple factors such as increased sebum production, inflammation, follicular hyperkeratinization, and the action of Propionibacterium acnes within the follicle. In an attempt to understand the specific genes involved in inflammatory acne, we performed gene expression profiling in acne patients. Skin biopsies were obtained from an inflammatory papule and from normal skin in six patients with acne. Biopsies were also taken from normal skin of six subjects without acne. Gene array expression profiling was conducted using Affymetrix HG-U133A 2.0 arrays comparing lesional to nonlesional skin in acne patients and comparing nonlesional skin from acne patients to skin from normal subjects. Within the acne patients, 211 genes are upregulated in lesional skin compared to nonlesional skin. A significant proportion of these genes are involved in pathways that regulate inflammation and extracellular matrix remodeling, and they include matrix metalloproteinases 1 and 3, IL-8, human beta-defensin 4, and granzyme B. These data indicate a prominent role of matrix metalloproteinases, inflammatory cytokines, and antimicrobial peptides in acne lesions. These studies are the first describing the comprehensive changes in gene expression in inflammatory acne lesions and are valuable in identifying potential therapeutic targets in inflammatory acne. Keywords: acne lesion, normal skin
Project description:The host immune response plays a critical role not only in protection from human leishmaniasis, but also in promoting disease severity. Although candidate gene approaches in mouse models of leishmaniasis have been extremely informative, a global understanding of the immune pathways active in lesions from human patients is lacking. To address this issue, genome-wide transcriptional profiling of Leishmania braziliensis-infected cutaneous lesions and normal skin controls was carried out. A signature of the L. braziliensis skin lesion was defined that includes over 2,000 differentially regulated genes. Pathway-level analysis of this transcriptional response revealed key biological pathways, as well as specific genes, associated with cutaneous pathology, generating a testable 'metapathway' model of immune-driven lesion pathology, and providing new insights for treatment of human leishmaniasis. Thirty-five skin biopsies were analyzed, including 10 normal skin biopsies (2 from North America and 8 from non-endemic area in Brazil), and 25 skin lesion biopsies (8 early cutaneous lesions, 17 late cutaneous lesions) obtained from Leishmania brazilensis-infected patients presenting at the Corte de Pedra Health Post in Corte de Pedra, Bahia, Brazil.
Project description:The mechanisms of inflammation in acne are not well understood. This study performed in two separate patient populations focused on the activation of adaptive and innate immunity in early inflamed acne. Biopsies were collected from lesional and non-lesional skin of acne patients. Psoriasis patients and healthy volunteers were included in the study for comparison (not included in the records). Using Affymetrix Genechips, we observed significant elevation of the signature cytokines of the Th17 lineage in acne lesions compared to non-lesional skin. The increased expression of IL-17 was confirmed with real-time qPCR (RT-PCR) in two separate patient populations. Cytokines involved in Th17 lineage differentiation (IL-1beta, IL-6, TGF-beta; IL23p19) were remarkably induced at the RNA level. In addition, pro-inflammatory cytokines (IL-8, TNF-α), Th1 markers (IL12p40, CXCR3, T-bet, IFN-gamma), T regulatory cell markers (Foxp3, IL-10, TGF-β) and antimicrobial peptides (S100A7, S100A9, LNC2, hBD2, hBD3, hCAP18) were induced. Importantly, immunohistochemistry revealed significantly increased numbers of IL-17A positive T cells and CD83 dendritic cells in the acne lesions. In summary our results demonstrate the presence of IL17A positive T cells and the activation of Th17-related cytokines in acne lesions, indicating that the Th17 pathway may play a pivotal role in the disease process, offering new targets of therapy. Total of 24 chips. 12 patients : 2 biospies per patient: 1 lesional and 1 non lesional.
Project description:Genome wide DNA methylation profiling of arsenic exposure and non-exposure population and patients with skin leisons. The Illumina Infinium HumanMethylation450 BeadChip (HM450K) was used to obtain DNA methylation profiles across approximately 450,000 CpGs in genomic DNA extracted from blood buffy coat samples. Samples included 66 arsenic exposure individuals, 35 non-exposure individuals and 18 arsenical skin lesion patients.
Project description:To acquire a better understanding of the molecular pathogenesis of HS, we performed mRNA microarray studies to compare gene expression in lesional skin to healthy skin of HS patients. A significant difference was observed in mRNA expression between lesional and clinically healthy skin of HS patients. Skin biopsy samples (n=30, LS: lesion, NL: non-lesion) were collected at baseline from patients with hidradenitis for RNA extraction and microarray analysis.
Project description:Innate immune defense against deep tissue infection by Staphylococcus aureus is orchestrated by fibroblasts that become antimicrobial when triggered to differentiate into adipocytes. However, the role of this process in non-infectious human diseases is unknown. To investigate the potential role of adipogenesis by dermal fibroblasts in acne, a disorder triggered by Cutibacterium acnes (C. acnes), single-cell RNA-sequencing was performed on human acne lesions and mouse skin challenged by C. acnes. A transcriptome consistent with adipogenesis was observed within specific fibroblast subsets from human acne and mouse skin lesions infected with C. acnes. Perifollicular dermal preadipocytes in human acne and mouse skin lesions showed colocalization of PREF1, an early marker of adipogenesis, and cathelicidin (Camp), an antimicrobial peptide. This capacity of C. acnes to trigger production of cathelicidin in preadipocytes was dependent on TLR2. Treatment of wild-type mice with retinoic acid (RA) suppressed the capacity of C. acnes to form acne-like lesions, inhibited adipogenesis and enhanced cathelicidin expression in preadipocytes, but lesions were unresponsive in Camp-/- mice, despite the anti-adipogenic action of RA. Analysis of inflamed skin of acne patients after retinoid treatment also showed enhanced induction of cathelicidin, a previously unknown beneficial effect of retinoids in difficult-to-treat acne. Overall, these data provide evidence that adipogenic fibroblasts are a critical component of the pathogenesis of acne and represent a potential target for future therapy.