Project description:Nitrate-reducing iron(II)-oxidizing bacteria are widespread in the environment contribute to nitrate removal and influence the fate of the greenhouse gases nitrous oxide and carbon dioxide. The autotrophic growth of nitrate-reducing iron(II)-oxidizing bacteria is rarely investigated and poorly understood. The most prominent model system for this type of studies is enrichment culture KS, which originates from a freshwater sediment in Bremen, Germany. To gain insights in the metabolism of nitrate reduction coupled to iron(II) oxidation under in the absence of organic carbon and oxygen limited conditions, we performed metagenomic, metatranscriptomic and metaproteomic analyses of culture KS. Raw sequencing data of 16S rRNA amplicon sequencing, shotgun metagenomics (short reads: Illumina; long reads: Oxford Nanopore Technologies), metagenome assembly, raw sequencing data of shotgun metatranscriptomes (2 conditions, triplicates) can be found at SRA in https://www.ncbi.nlm.nih.gov/bioproject/PRJNA682552. This dataset contains proteomics data for 2 conditions (heterotrophic and autotrophic growth conditions) in triplicates.
Project description:Purpose: In order to understand the functional significance of sperm transcriptome in stallion fertility, the aim of this study was to generate a detailed body of knowledge about the sperm RNA profile that defines a normal fertile stallion. Methods: The 50 bp single-end ABI SOLiD raw reads were directly aligned with the horse reference sequence EcuCab2 using ABI aligner software (NovoalignCS version 1.00.09, novocraft.com) which uses multiple indexes in the reference genome, identifies candidate alignment locations for each primary read, and allows completion of the alignment. Results: Next generation sequencing (NGS) of total RNA from the sperm of two reproductively normal stallions generated about 70 million raw reads and more than 3 Gb of sequence per sample; over half of these aligned with the EcuCab2 reference genome. Altogether, 19,257 sequence tags with average coverage ?1 (normalized number of transcripts) were mapped in the horse genome. Conclusion: The sequence of stallion sperm transcriptome is an important foundation for the discovery of transcripts of known and novel genes, and non-coding RNAs, thus improving the annotation of the horse genome sequence draft and providing markers for evaluating stallion fertility. Reproductively fertile Stallion sperm transcriptome as revealed by RNA sequencing
Project description:GATA4 occupancy on the mouse genome of satellite cell-derived primary myoblasts. Proliferating myoblasts cultured in growth medium were immunoprecipitated with anti-GATA4 antibody or control IgG. Precipitated genomic DNAs were subjected to next generation sequencing. Paired-end 150 bp sequence reads of GATA4-ChIP and IgG-ChIP using mouse skeletal muscle myoblasts.
Project description:We have sequenced miRNA libraries from human embryonic, neural and foetal mesenchymal stem cells. We report that the majority of miRNA genes encode mature isomers that vary in size by one or more bases at the 3’ and/or 5’ end of the miRNA. Northern blotting for individual miRNAs showed that the proportions of isomiRs expressed by a single miRNA gene often differ between cell and tissue types. IsomiRs were readily co-immunoprecipitated with Argonaute proteins in vivo and were active in luciferase assays, indicating that they are functional. Bioinformatics analysis predicts substantial differences in targeting between miRNAs with minor 5’ differences and in support of this we report that a 5’ isomiR-9-1 gained the ability to inhibit the expression of DNMT3B and NCAM2 but lost the ability to inhibit CDH1 in vitro. This result was confirmed by the use of isomiR-specific sponges. Our analysis of the miRGator database indicates that a small percentage of human miRNA genes express isomiRs as the dominant transcript in certain cell types and analysis of miRBase shows that 5’ isomiRs have replaced canonical miRNAs many times during evolution. This strongly indicates that isomiRs are of functional importance and have contributed to the evolution of miRNA genes Sequence library of miRNAs from a single sample of human foetal mesenchymal stem cells. Results tested and confirmed by northern blotting. Please note that only raw data files are available for the embryonic and neual samples and thus, directly submitted to SRA (SRX547311, SRX548700, respectively under SRP042115/PRJNA247767)
Project description:Purpose: Next-generation sequencing (NGS) has been utilized for systems-based analysis of rice plants. The goals of this study were to compare the transcriptome between non-transgenic (NT) control and OsTZF8 overexpressing transgenic plants. Methods: Total RNAs were extracted from the whole plants of OsTZF8 overexpressing plants (T4 generation, line number #20) and non-transgenic (NT) plant using RNeasy plant mini kit (Qiagen, Germany) according to the manufacturer’s instruction. cDNA libraries were prepared from total RNAs using TruSeq RNA sample Prep kit (v2) (Macrogen, Korea). Two biological replicates were analyzed by RNA-sequencing analysis. Single-end sequences were obtained using IRGSP (v 1.0) and raw sequence reads were trimmed to remove adaptor sequence, and those with a quality lower than Q20 were removed using the Trimmomatic 0.32 software (Bolger et al., 2014). To map the reads to reference genome, all reads were assembled with annotated genes from the Rap-DB database [http://rapdb.dna.affrc.go.jp; IRGSP (v 1.0)] using TopHat software (https://ccb.jhu.edu/software/tophat/index.shtml). Conclusions: Our study has identified downstream candidate genes regulated by overexpression of OsTZF8.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.