Project description:Drosophila sechellia is an island endemic host specialist that has evolved to consume the toxic fruit of Morinda citrifolia, also known as noni fruit. Recent studies by our group and others have examined genome-wide gene expression responses of fruit flies to individual highly abundant compounds found in noni responsible for the fruit’s unique chemistry and toxicity. In order to relate these reductionist experiments to the gene expression responses to feeding on noni fruit itself, we fed rotten noni fruit to adult female D. sechellia and performed RNA-sequencing. Combining the reductionist and more wholistic approaches, we have identified candidate genes that may contribute to each individual compound and those that play a more general role in response to the fruit as a whole. Using the compound specific and general responses, we used transcription factor prediction analyses to identify the regulatory networks and specific regulators involved in the responses to each compound and the fruit itself. The identified genes and regulators represent the possible genetic mechanisms and biochemical pathways that contribute to toxin resistance and noni specialization in D. sechellia.
Project description:This study evaluated the protective effects of Noni fruit juice on acute liver injury induced by carbon tetrachloride (CCl(4)) in female Sprague-Dawley (SD) rats. Liver damage (micro-centrilobular necrosis) was observed in animals pretreated with 20% placebo (drinking water) + CCl(4). However, pretreatment with 20% Noni juice in drinking water + CCl(4) resulted in markedly decreased hepatotoxic lesions. Furthermore, serum alanine aminotransferase and aspartate aminotransferase levels were significantly lower in the Noni group than the placebo group. In a correlative time-dependent study, one dose of CCl(4) (0.25 mL/kg in corn oil, p.o.) in female SD rats, pretreated with 10% placebo for 12 days, caused sequential progressive hepatotoxic lesions over a 24 h period, while a protective effect from 10% Noni juice pretreatment was observed. These results suggest that Noni juice is effective in protecting the liver from extrinsic toxin exposure.
Project description:Morinda citrifolia L. (Rubiaceae), commonly called noni, is a medicinal plant that is often used as botanical dietary supplement. This study is the first to report and characterize the complete chloroplast genome of M. citrifolia. We found that it contains 153,113 bp with a GC content of 38.05%, consisting of two inverted repeat regions (IRs, 25,588 bp), a large single-copy region (LSC, 83,974 bp), and a small single copy (SSC, 17,963 bp) region. One hundred and twenty-five genes were annotated, including 84 protein-coding genes, 33 transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes. Phylogenetic analysis showed that M. citrifolia and Gynochthodes officinalis were closely related. Overall, this study provided a wealth of information for a follow-up phylogenetic and evolutionary study of the Gentianales.