Project description:Mitochondria, the powerhouse of the cell, has been recognized as the key players in cancer cell biology, including cancer metabolism, metastasis, and drug resistance. Recent studies have demonstrated a functional interplay between mitochondria and epithelial-mesenchymal transition (EMT) in cancer. To delineate the role of mitochondrial components in this interplay, we induced the EMT in hepatoma HepG2 cells. Mitochondria was isolated from EMT-HepG2 cells, untreated HepG2 cells, and normal hepatic HL7702 cells. Mitochondrial RNAs were isolated for Illumina sequencing. Identification of mitochondrial RNAs that regulate EMT or mitochondria function may serve as potential therapeutic targets for developing new strategies to treat cancers.
Project description:Mitochondria were isolated from skeletal muscle and the remaining tissue fraction was collected to identify RNA enriched in mitochondria.
Project description:The molecular roles of the dually targeted ElaC domain protein 2 (ELAC2) during nuclear and mitochondrial RNA processing in vivo have not been distinguished. We generated conditional knockout mice of ELAC2 to identify that it is essential for life and its activity is non-redundant. Heart and skeletal muscle-specific loss of ELAC2 causes dilated cardiomyopathy and premature death at 4 weeks. Transcriptome-wide analyses of total RNAs, small RNAs, mitochondrial RNAs and miRNAs identified the nuclear and mitochondrial molecular targets of ELAC2 in vivo. We show that ELAC2 is required for processing of nuclear and mitochondrial tRNAs and for the balanced maintenance of C/D box snoRNAs, a new class of tRNA fragments, and miRNAs. We identify that correct biogenesis of regulatory non-coding RNAs is essential for both cytoplasmic and mitochondrial protein synthesis as well as the assembly of mitochondrial ribosomes and cytoplasmic polysomes. Taken together our data show that nuclear tRNA processing is required for the balanced production of snoRNAs and miRNAs for gene expression and that 3′ tRNA processing follows 5′ tRNA processing but nevertheless is an essential step in the production of all mature mitochondrial RNAs and the majority of nuclear tRNAs.
Project description:The molecular roles of the dually targeted ElaC domain protein 2 (ELAC2) during nuclear and mitochondrial RNA processing in vivo have not been distinguished. We generated conditional knockout mice of ELAC2 to identify that it is essential for life and its activity is non-redundant. Heart and skeletal muscle-specific loss of ELAC2 causes dilated cardiomyopathy and premature death at 4 weeks. Transcriptome-wide analyses of total RNAs, small RNAs, mitochondrial RNAs and miRNAs identified the nuclear and mitochondrial molecular targets of ELAC2 in vivo. We show that ELAC2 is required for processing of nuclear and mitochondrial tRNAs and for the balanced maintenance of C/D box snoRNAs, a new class of tRNA fragments, and miRNAs. We identify that correct biogenesis of regulatory non-coding RNAs is essential for both cytoplasmic and mitochondrial protein synthesis as well as the assembly of mitochondrial ribosomes and cytoplasmic polysomes. Taken together our data show that nuclear tRNA processing is required for the balanced production of snoRNAs and miRNAs for gene expression and that 3′ tRNA processing follows 5′ tRNA processing but nevertheless is an essential step in the production of all mature mitochondrial RNAs and the majority of nuclear tRNAs.