Project description:Sickle cell disease is the most common genetic disorder in African-Americans. The opioid analgesic, morphine, has long been the treatment for the severe pain associated with this disease. Here we reveal that the opioid antagonist, naloxone, possesses potent analgesic activity in two strains of sickle cell mice (NY1DD and hBERK1) and not in their respective controls (ICR-CD1 and C57BL/6J) when administered by three parenteral routes. In the NY1DD sickle mice, naloxone (i.c.v.) possessed ~300-fold greater potency than morphine (i.c.v.). Other opioid antagonists (naltrexone, norbinaltorphimine, naltrindole) were substantially less effective in producing analgesia. Naloxone and morphine were synergistic in NY1DD mice, suggesting that analgesia was mediated via different receptor systems. Since microarray analysis suggested naloxone-induced down-regulation of the CCR5 chemokine receptor in NY1DD mice but not in control mice, the role of its endogenous ligand, CCL5 (RANTES), was investigated. Keywords: Comparison of drug induced gene expression
Project description:Sickle cell disease is the most common genetic disorder in African-Americans. The opioid analgesic, morphine, has long been the treatment for the severe pain associated with this disease. Here we reveal that the opioid antagonist, naloxone, possesses potent analgesic activity in two strains of sickle cell mice (NY1DD and hBERK1) and not in their respective controls (ICR-CD1 and C57BL/6J) when administered by three parenteral routes. In the NY1DD sickle mice, naloxone (i.c.v.) possessed ~300-fold greater potency than morphine (i.c.v.). Other opioid antagonists (naltrexone, norbinaltorphimine, naltrindole) were substantially less effective in producing analgesia. Naloxone and morphine were synergistic in NY1DD mice, suggesting that analgesia was mediated via different receptor systems. Since microarray analysis suggested naloxone-induced down-regulation of the CCR5 chemokine receptor in NY1DD mice but not in control mice, the role of its endogenous ligand, CCL5 (RANTES), was investigated. Keywords: Comparison of drug induced gene expression
Project description:We hypothesized that miRNA regulation may be invloved in hydroxyurea-mediated fetal hemoglobin induction. Microarray analysis was utilized as an initial screening tool to determine differential miRNA expression in CD71+ erythroid cells comparing cells from control individuals without sickle cell anemia to patients with sickle cell anemia prior to treatment with hydroxyurea and patients receiving the maximum tolerated dose (MTD) of hydroxurea.
Project description:In this study we analysed the proteome of transforming growth factor β-induced protein (TGFBIp) R124H transgenic mouse corneas in an attempt to understand the disease mechanisms leading to the granular corneal dystrophy type 2. The transgenic mouse model was generated by insertion of human TGFBI cDNA with the R124H mutation into the first exon of the mouse TGFBI DNA generating the transgenic TGFBIR124H mouse model We compared the corneal proteome of three wild-type, heterozygous, and homozygous mice of different genders, which were age-matched and analysed the proteolytic processing and relative amount of TGFBIp. No protein deposits were observed in the investigated corneas.
Project description:We hypothesized that miRNA regulation may be invloved in hydroxyurea-mediated fetal hemoglobin induction. Microarray analysis was utilized as an initial screening tool to determine differential miRNA expression in CD71+ erythroid cells comparing cells from control individuals without sickle cell anemia to patients with sickle cell anemia prior to treatment with hydroxyurea and patients receiving the maximum tolerated dose (MTD) of hydroxurea. CD71+ cells were isolated from whole blood of control individuals (n=2), pediatric patients without hydroxyurea treatment (n=3) and pediatric patients at hydroxyurea MTD (n=3). All 8 samples were analyzed for miRNA expression.
Project description:Identification of familial amyotrophic lateral sclerosis (fALS) related genes. Material from three hSOD1(G93A) transgenic mice was compared to material from three non-transgenic control mice using an alternating loop design on two-colour cDNA microarrays. Statistical data management and analysis: postgreSQL relational database (www.postgresql.org), Perl, and R (www.r-project.org); pin-wise lowess-regression based normalisation (Yang et al., 2002 [PMID: 11842121]); mixed ANOVA-model. Keywords = amyotrophic lateral sclerosis, ALS, SOD1 mouse model Keywords: other
Project description:<p>Phenotypic heterogeneity is characteristic of sickle cell anemia, a Mendelian disorder caused by homozygosity for the sickle HBB gene (glu6val). Patients have different rates of hemolysis/vasculopathy and viscosity/vasoocclusion-related complications. These complications account for a substantial reduction in life expectancy. In 1994, the median life expectancy for men and women with sickle cell anemia was 42 and 48 years, respectively, and despite many advances in care, the annual mortality still approaches 4%. Fetal hemoglobin (HbF) is one of the most studied markers of severity of sickle cell anemia, and detailed longitudinal measurements were taken on subjects enrolled in the Cooperative Study of Sickle Cell Disease (CSSCD). Cubic root transformation of the median values from follow-up in 848 African American subjects is the phenotype data used in the GWAS of fetal hemoglobin. The analysis was adjusted by sex. Details are in Solovieff et al., Blood 2010 [PMID: <a href="http://www.ncbi.nlm.nih.gov/pubmed/20018918" target="_blank">20018918</a>].</p> <p>To integrate individual disease complications into a comprehensive measure of severity, we developed a model of the associations among clinical and laboratory variables that scored disease severity as the risk of death within 5 years. This network was developed using data obtained from more than 3,400 subjects from the CSSCD, and its accuracy was validated in two unrelated sets of sickle cell patients. Recently, the network was also validated in a small European cohort of patients with sickle cell anemia. We used extreme values of disease severity as cases and control in the GWAS of severity of sickle cell anemia. We conducted the GWAS in 1,265 patients with either "severe" (177) or "mild" disease (1088) based on a network model of disease severity. Details are in Sebastiani et al. Am J Hematol, 2010 [PMID: <a href="http://www.ncbi.nlm.nih.gov/pubmed/20029952" target="_blank">20029952</a>].</p>
Project description:Sickle cell disease (SCD) is caused by a pathogenic hemoglobin (Hb) mutation, yet patients can have dramatically variable clinical manifestations. Here we address the genetic basis of this clinical heterogeneity. Using a systems genetics approach, we performed whole blood gene expression analysis and eQTL analysis on different clinical phenotypes in SCD patients. We generated whole blood gene expression profiles for 311 West-African children recruited from the National Sickle Cell Disease Centre in Cotonou, Benin which included 250 patients with varying degrees of SCD severities and 61 age-matched controls. SCD is caused by a point-mutation in the beta-hemoglobin gene that changes the normal HbAA protein into, most often, an abnormal HbSS or HbSC protein. The SCD patients recruited in the study either had HbSS or HbSC phenotypes and were categorized into different 3 clinical states based on follow-up status (Rahimy, MC, et al. Effect of a comprehensive clinical care program on disease course in severely ill children with sickle cell anemia in sub-Saharan African setting. Bood 102, 834-838. 2002). When patients are refered to the clinic, they are enrolled when they are in steady-state condition, and are labeled as entry (E). Patients followed at the SCD clinic are labeled as FU. Control patients were recruited and are labeled as C. Patients were also assigned a severity score (Sebastiani, P. et al. A network model to predict the risk of death in sickle cell disease. Blood 110, 2727-2735, 2007). Hemoglobin protein status (Hb phenotype) was confirmed for each patient using standard electrophoretic techniques. We generated genotypes for 263 of these individuals and performed principal component analysis (PCA) which identified 2 signigicant genotypic principal components (gPC1 and gPC2). Using the gene expression and genotyping data, we performed an eSNP analysis. . Gene expression data presented in this study.
Project description:Genetic differences in endothelial biology could underlie development of phenotypic heterogeneity amongst individuals afflicted with vascular diseases. We obtained BOEC (blood outgrowth endothelial cells) from 20 subjects with sickle cell anemia (age 4-19) shown to be either at-risk (n=11) or not-at-risk (n=9) for ischemic stroke due to, respectively, having or not having occlusive disease at the Circle of Willis (CoW). Gene expression profiling identified no significant single gene differences between the two groups, as expected. However, analysis of Biological Systems Scores, using gene sets that were pre-determined to survey each of nine biological systems, showed that only changes in inflammation signaling are characteristic of the at-risk subjects, as supported by multiple statistical approaches Experiment Overall Design: We obtained BOEC (blood outgrowth endothelial cells) from 20 subjects with sickle cell anemia (age 4-19) shown to be either at-risk (n=11) or not-at-risk (n=9) for ischemic stroke due to, respectively, having or not having occlusive disease at the Circle of Willis (CoW). To allow power calculations to be done, we performed microarray analysis on BOEC from 27 normal subjects of diverse ages. Gene expression profilings were obtained by using Affymetrix U133A chips