Project description:Chronic infection of the human stomach with Helicobacter pylori leads to a variety of pathologic sequelae including peptic ulcer and gastric cancer, resulting in significant human morbidity and mortality. Several genes have been implicated in disease related to H. pylori infection including the vacuolating cytotoxin and the cag pathogenicity island. Other factors important for establishment and maintenance of infection include urease enzyme production, motility, iron uptake and stress response. We utilized a C57BL/6 mouse infection model to query a collection of 2400 transposon mutants in two different bacterial strain backgrounds for H. pylori genetic loci contributing to colonization of the stomach. Microarray based tracking of transposon mutants allowed us to monitor the behavior of transposon insertions in 758 different gene loci. Of the loci measured 223 (29%) had a predicted colonization defect. These include previously described H. pylori virulence genes, genes implicated in virulence in other pathogenic bacteria and 81 hypothetical proteins. We have retested 10 previously uncharacterized candidate colonization gene loci by making independent null alleles and confirmed their colonization phenotype using competition experiments and determination of the dose required for 50% infection. Of the genetic loci retested, 60% have strain specific colonization defects while 40% had phenotypes in both strain backgrounds for infection, highlighting the profound effect of H. pylori strain variation on the pathogenic potential of this organism. This SuperSeries is composed of the SubSeries listed below.
Project description:Helicobacter pylori (H. pylori) is a type of pathogen in humans that has infected nearly half of the population worldwide. Infections with H. pylori are typically associated with chronic gastritis and may even lead to gastric and duodenal ulcers and stomach cancer. While the mechanisms behind persistent colonization by H. pylori and the development of gastritis associated with it remain unclear, it is generally believed that the gastric epithelial cells (GECs) modulated by H. pylori in the gastric mucosa play a crucial role. We extensively studied the global gene expression patterns in H. pylori-infected AGS cells, a line of gastric epithelial cells, and identified genes that show increased expression upon infection with H. pylori.
Project description:Helicobacter pylori (H. pylori) is a human pathogen that infects almost half of the world’s population. Infection with H. pylori is frequently associated with chronic gastritis and can even lead to gastric and duodenal ulcers and gastric cancer. Although the persistent colonization of H. pylori and the development of H. pylori-associated gastritis remain poorly understood, it is believed that, in gastric mucosa, the modulated gastric epithelial cells (GECs) by H. pylori are key contributors. We used microarrays to detail the global programme of gene expression in Helicobacter pylori infected-gastric epithelial cell line AGS cells and identified up-regulated genes induced by Helicobacter pylori infection.
Project description:Helicobacter pylori are gram-negative bacteria that colonize the human stomach and are the major etiological factor in gastric carcinoma development. The aim of this work was to evaluate changes in gene expression in gastric cells induced by H. pylori.
Project description:Based on preliminary data demonstrating that macrophages are critical regulators of Helicobacter pylori colonization and gastric pathology in mice, we sought to investigate how macrophages may serve as bacterial reservoirs of intracellular H. pylori.
Project description:The aim of this study is to identify alterations induced in gastric mucosa of mice exposed to Pteridium aquilinum and/or infected with Helicobacter pylori, in order to identify genes that are induced by bracken fern exerts exacerbating effects on gastric lesions associated to the infection. Six groups of C57Bl/6 mice were be used: 1) control, 2) infected Helicobacter pylori, 3) treated with Bracken fern extract orogastrically, 4) treated with Bracken fern extract in drinking water, 5) infected Helicobacter pylori + treated with Bracken fern extract orogastrically, 6) infected Helicobacter pylori + treated with Bracken fern extract in drinking water. The infection procedure was performed using an orogastric inoculation of H.pylori (strain SS1) twice in the first week. The RNA isolation was done in triplicate (3 mice per each condition). Further evaluation of morphological alterations on gastric mucosa, proliferative index and induction of DNA strand breaks will be performed in the mice stomach exposed to Pteridium aquilinum infected or not with Helicobacter pylori. Alterations of glycosylation in gastric tissues will also evaluated.
Project description:Helicobacter pylori (H. pylori) is a ε-proteobacterium that colonizes the stomach of about half of the world's population. Persistent infections have been associated with several gastric diseases. Mainly rod- or spiral shaped but also coccoid H. pylori forms have been isolated from mucus layer biopsies of patients. It is still being debated whether the coccoid form can be transformed back into the spiral form or whether this morphology is a result of bacterial cell death or persistence. We established stable isotope labeling by amino acids in cell culture (SILAC) for quantitative proteomics of H. pylori and applied it to investigate differences between the spiral and the coccoid morphology. We detected 72% and were able to relatively quantify 47% of the H. pylori proteome. Proteins involved in cell division and transcriptional and translational processes showed a lower abundance in coccoid cells. Additionally, proteins related to host colonization, including CagA, the arginase RocF, and the TNF-α inducing protein were down-regulated. The fact that outer membrane proteins were observed at higher abundances might represent a mechanism for immune evasion but also preserves adherence to host cells. The established protocol for relative protein quantification of H. pylori samples offers new possibilities for research on H. pylori.
Project description:Helicobacter pylori colonization of the human stomach is a strong risk factor for gastric cancer. To investigate H. pylori-induced gastric molecular alterations, we used a Mongolian gerbil model of gastric carcinogenesis. Histologic evaluation revealed varying levels of atrophic gastritis (a premalignant condition characterized by parietal and chief cell loss) in H. pylori-infected animals, and transcriptional profiling revealed a loss of markers for these cell types. We then assessed the spatial distribution and relative abundance of proteins in the gastric tissues using imaging mass spectrometry and liquid chromatography with tandem mass spectrometry (LC-MS/MS). We detected striking differences in protein content of corpus and antrum tissues. 492 proteins were preferentially localized to the corpus in uninfected animals. The abundance of 91 of these proteins was reduced in H. pylori-infected corpus tissues exhibiting atrophic gastritis compared to infected corpus tissues with non-atrophic gastritis or uninfected corpus tissues; these included numerous proteins with metabolic functions. Fifty proteins localized to the corpus in uninfected animals were diffusely delocalized throughout the stomach in infected tissues with atrophic gastritis; these included numerous proteins with roles in protein processing. Corresponding alterations were not detected in animals infected with a H. pylori ∆cagT mutant (lacking Cag type IV secretion system activity). These results indicate that H. pylori can cause loss of proteins normally localized to the gastric corpus as well as diffuse delocalization of corpus-specific proteins, resulting in marked changes in the normal gastric molecular partitioning into distinct corpus and antrum regions.
Project description:Helicobacter pylori are gram-negative bacteria that colonize the human stomach and are the major etiological factor in gastric carcinoma development. The aim of this work was to evaluate changes in gene expression in gastric cells induced by H. pylori. The human gastric carcinoma-derived cell line AGS was infected with H. pylori strain 60190 (ATCC 49503) for 24 hours. RNA was extracted from three independent experiments.
Project description:The human gastric pathogen Helicobacter pylori is extremely well adapted to the highly acidic conditions encountered in the stomach. The pronounced acid resistance of H. pylori relies mainly on the ammonia-producing enzyme urease, however, urease-independent mechanisms are likely to contribute to acid adaptation. Acid-responsive gene regulation is mediated at least in part by the ArsRS two-component system consisting of the essential OmpR-like response regulator ArsR and the non-essential cognate histidine kinase ArsS whose autophosphorylation is triggered in response to low pH. In this study by global transcriptional profiling of an ArsS-deficient H. pylori mutant grown at pH 5.0 we define the ArsR~P- dependent regulon consisting of 110 genes including the urease gene cluster, the genes encoding the aliphatic amidases AmiE and AmiF and the rocF gene encoding arginase. Keywords: Identification of an ArsRS-Regulon